Câu hỏi:
13/07/2024 501Cho hai hàm số bậc nhất y = 2x + 3k và y = (2m + 1)x + 2k – 3. Tìm điều kiện đối với m và k để đồ thị của hai hàm số là:
Hai đường thẳng cắt nhau.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hàm số y = 2x + 3k có các hệ số a = 2, b = 3k.
Hàm số y = (2m + 1)x + 2k – 3 có các hệ số a' = 2m + 1, b' = 2k – 3.
Hai hàm số đã cho là hàm số bậc nhất nên 2m + 1 ≠ 0
Hai đường thẳng cắt nhau khi a ≠ a' tức là:
2 ≠ 2m + 1 ⇔ 2m ≠ 1
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số bậc nhất y = ax – 4 (1). Hãy xác định hệ số a trong mỗi trường hợp sau:
Đồ thị của hàm số (1) cắt đường thẳng y = 2x – 1 tại điểm có hoành độ bằng 2.
Câu 2:
Cho hàm số bậc nhất y = ax – 4 (1). Hãy xác định hệ số a trong mỗi trường hợp sau:
Đồ thị của hàm số (1) cắt đường thẳng y = -3x + 2 tại điểm có tung độ bằng 5.
Câu 4:
Cho hàm số y = 2x + b. Hãy xác định hệ số b trong mỗi trường hợp sau:
Đồ thị của hàm số đã cho cắt trục tung tại điểm có tung độ bằng – 3.
Câu 5:
Một đường thẳng song song với trục hoành Ox, cắt trục tung Oy tại điểm có tung độ bằng 1, cắt các đường thẳng
theo thứ tự tại hai điểm M và N. Tìm tọa độ của hai điểm M và N.
Câu 6:
Cho hàm số y = 2x + b. Hãy xác định hệ số b trong mỗi trường hợp sau:
Đồ thị của hàm số đã cho đi qua điểm A(1; 5).
Câu 7:
Cho hai hàm số bậc nhất y = 2x + 3k và y = (2m + 1)x + 2k – 3. Tìm điều kiện đối với m và k để đồ thị của hai hàm số là:
Hai đường thẳng song song với nhau.
về câu hỏi!