Câu hỏi:

12/07/2024 2,063

Cho đường tròn (O) có các dây AB và CD bằng nhau, các tia AB và CD cắt nhau tại điểm E nằm bên ngoài đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. Chứng minh rằng:

 EH = EK

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Để học tốt Toán 9 | Giải bài tập Toán 9

Nối OE ta có: AB = CD

=> OH = OK (Định lí 3)

Hai tam giác vuông OEH và OEK có:

    OE là cạnh chung

    OH = OK

=> ΔOEH = ΔOEK (cạnh huyền, cạnh góc vuông)

=> EH = EK         (1). (đpcm)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Kẻ OJ vuông góc với AB tại J.

Theo quan hệ vuông góc giữa đường kính và dây suy ra: J là trung điểm của AB.


Áp dụng định lí Pitago trong tam giác vuông OAJ có:

OJ2 = OA2 – AJ2 = 52 – 42 = 9 (OA = R = 5cm)

=> OJ = 3cm         (1)

Vậy khoảng cách từ tâm O đến dây AB là OJ = 3cm.

Lời giải

O là giao điểm của 3 đường trung trực của tam giác ABC

⇒ O là tâm đường tròn ngoại tiếp tam giác ABC

OD > OE ⇒ AB < AC

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP