Câu hỏi:

11/07/2024 1,668

Hãy chứng minh cách dựng trên là đúng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải bài tập Toán 9 | Giải Toán lớp 9

Ta có: MA = MO = MB ( cùng bằng bán kính đường tròn tâm M, bán kính MO)

MA = MB ⇒ ΔMAB cân tại M ⇒ ∠(BAO) = ∠(ABM)

MO=MB⇒ΔMOB cân tại M ⇒∠(BOA) = ∠(MBO)

⇒∠(BAO) + ∠(BOA) = ∠(ABM) + ∠(MBO) = ∠(ABO) (1)

Mặt khác ta lại có: ∠(BAO) + ∠(BOA) + ∠(ABO) = 180o (2) (tổng 3 góc trong tam giác)

Từ (1) và (2) ⇒ ∠(ABO) = 90o

Hay AB là tiếp tuyến của (O)

Chứng minh tương tự, ta được AC là tiếp tuyến của (O)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Để học tốt Toán 9 | Giải bài tập Toán 9

Ta có: AB2 + AC2 = 32 + 42 = 25

BC2 = 52 = 25

Nên AB2 + AC2 = BC2

=> tam giác ABC vuông tại A hay AC ⊥ BA.

Đường thẳng AC đi qua điểm A của đường tròn và vuông góc với bán kính BA đi qua điểm A nên AC là tiếp tuyến của đường tròn.

Lời giải

Giải bài tập Toán 9 | Giải Toán lớp 9

Ta có: BC đi qua điểm H thuộc đường tròn (A; AH)

BC ⊥ AH tại H

⇒ BC là tiếp tuyến của đường tròn (A; AH)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP