Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

Giải bài tập Toán 9 | Giải Toán lớp 9

Ta có: BC đi qua điểm H thuộc đường tròn (A; AH)

BC ⊥ AH tại H

⇒ BC là tiếp tuyến của đường tròn (A; AH)

Lời giải

Giải bài tập Toán 9 | Giải Toán lớp 9

Ta có: MA = MO = MB ( cùng bằng bán kính đường tròn tâm M, bán kính MO)

MA = MB ⇒ ΔMAB cân tại M ⇒ ∠(BAO) = ∠(ABM)

MO=MB⇒ΔMOB cân tại M ⇒∠(BOA) = ∠(MBO)

⇒∠(BAO) + ∠(BOA) = ∠(ABM) + ∠(MBO) = ∠(ABO) (1)

Mặt khác ta lại có: ∠(BAO) + ∠(BOA) + ∠(ABO) = 180o (2) (tổng 3 góc trong tam giác)

Từ (1) và (2) ⇒ ∠(ABO) = 90o

Hay AB là tiếp tuyến của (O)

Chứng minh tương tự, ta được AC là tiếp tuyến của (O)

Lời giải

Để học tốt Toán 9 | Giải bài tập Toán 9

Ta có: AB2 + AC2 = 32 + 42 = 25

BC2 = 52 = 25

Nên AB2 + AC2 = BC2

=> tam giác ABC vuông tại A hay AC ⊥ BA.

Đường thẳng AC đi qua điểm A của đường tròn và vuông góc với bán kính BA đi qua điểm A nên AC là tiếp tuyến của đường tròn.

Lời giải

Để học tốt Toán 9 | Giải bài tập Toán 9

Đường tròn (O) tiếp xúc với d nên d là tiếp tuyến của (O) hay d vuông góc với bán kính của (O) tại tiếp điểm A. Suy ra tâm O của đường tròn nằm trên đường thẳng vuông góc với d tại A.

Lại có (O) qua B nên tâm O của đường tròn nằm trên đường trung trực của AB.

Vậy tâm O là giao điểm của đường vuông góc với d tại A và đường trung trực của AB.

Lời giải

Từ hình vẽ, đường tròn (A) và (C) nằm cùng một phía (về bên dưới) so với sợi dây nên có cùng chiều quay, còn đường tròn (B) nằm ở khác phía (bên trên).

=> đường tròn (A) và (C) quay ngược chiều với (B).

Khi dây cua-roa chuyển động, đường tròn (B) quay ngược chiều của kim đồng hồ nên đường tròn (A) và (C) có cùng chiều quay của kim đồng hồ.

4.6

5624 Đánh giá

50%

40%

0%

0%

0%