Giải bài tập SGK Toán 9 tập 2 hay nhất Bài 6: Cung chứa góc
24 người thi tuần này 4.6 1.7 K lượt thi 6 câu hỏi
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Vẽ Hình
b) Vì nên
là góc nội tiếp chắn nửa đường tròn đường kính CD hay nằm trên đường tròn đường kính CD
Tương tự như vậy ta chứng minh được nằm trên đường tròn đường kính CD
Vậy nằm trên đường tròn đường kính CD
Lời giải
Qũy đạo chuyển động của điểm M là hai cung tròn đối xứng nhau qua dây AB
Lời giải
* Dự đoán : Quỹ tích điểm I là cung chứa góc dựng trên đoạn BC.
* Chứng minh :
Phần thuận : Chứng minh mọi điểm I thỏa mãn điều kiện trên đều thuộc cung chứa góc dựng trên đoạn BC.
⇒ I thuộc cung chứa góc dựng trên đoạn thẳng BC.
Phần đảo: Chứng minh mọi điểm I thuộc cung chứa góc dựng trên đoạn BC, đều có tam giác ABC thỏa mãn điều kiện.
+ Lấy I trên cung chứa góc dựng trên đoạn BC
+ Kẻ tia Bx sao cho BI là phân giác của
+ Kẻ tia Cy sao cho CI là phân giác của
+ Bx cắt Cy tại A.
Khi đó I là giao điểm của hai đường phân giác trong tam giác ABC
Vậy ΔABC vuông tại A thỏa mãn đề bài.
Kết luận : Quỹ tích điểm I là toàn bộ cung chứa góc dựng trên đoạn BC (khác B và C).
Kiến thức áp dụng
+ Thông thường, bài toán quỹ tích ta làm theo các bước :
1, Dự đoán quỹ tích
2, Chứng minh quỹ tích : gồm Phần thuận và Phần đảo
3, Kết luận.
+ Quỹ tích các điểm M thỏa mãn (với A, B cố định, α không đổi) là cung chứa góc α dựng trên đoạn AB. (Cách dựng xem SGK).
Lời giải
Dự đoán: Quỹ tích cần tìm là nửa đường tròn đường kính AB.
Chứng minh phần thuận:
ABCD là hình thoi
⇒ AC ⊥ BD ( hình thoi có 2 đường chéo vuông góc với nhau)
⇒
Vậy quỹ tích của O là nửa đường tròn đường kính AB.
Chứng minh phần đảo: Chứng minh với mọi điểm O thuộc nửa đường tròn đường kính AB ta đều có hình thoi ABCD thỏa mãn đề bài.
+ Lấy điểm O thuộc nửa đường tròn đường kính AB
+ Lấy C đối xứng với A qua O
+ Lấy D đối xứng với B qua O.
Tứ giác ABCD có AC cắt BD tại O là trung điểm mỗi đường
⇒ ABCD là hình bình hành.
Mà O thuộc nửa đường tròn đường kính AB
⇒
⇒ AC ⊥ DB
⇒ Hình bình hành ABCD là hình thoi.
Kết luận: Quỹ tích điểm O là nửa đường tròn đường kính AB (khác A và B)
Kiến thức áp dụng
+ Thông thường, bài toán quỹ tích ta làm theo các bước:
1, Dự đoán quỹ tích
2, Chứng minh quỹ tích: gồm Phần thuận và Phần đảo
3, Kết luận.
+ Quỹ tích các điểm nhìn đoạn thẳng AB cho trước dưới một góc vuông là đường tròn đường kính AB.
Lời giải
Cách dựng:
+ Dựng đoạn thẳng AB = 3cm.
+ Dựng góc
+ Dựng tia Ay vuông góc với tia Ax.
+ Dựng đường trung trực d của đoạn thẳng AB.
+ d cắt Ay tại O.
+ Dựng đường tròn tâm O, bán kính OA.
là cung chứa góc cần dựng.
Chứng minh:
+ O thuộc đường trung trực của AB
⇒ OA = OB
⇒ B thuộc đường tròn (O; OA).
Ax ⊥ AO ⇒ Ax là tiếp tuyến của (O; OA).
⇒ là góc tạo bởi tiếp tuyến Ax và dây AB
Lấy M ∈ là góc nội tiếp chắn cung nhỏ
⇒ là cung chứa góc dựng trên đoạn AB = 3cm.
Kết luận: Bài toán có một nghiệm hình.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
338 Đánh giá
50%
40%
0%
0%
0%