Luyện tập trang 69-70
19 người thi tuần này 4.6 28.5 K lượt thi 6 câu hỏi
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
ΔABC vuông tại A có AB = 3, AC = 4 và đường cao AH như trên hình.
Theo định lí Pitago ta có:
Mặt khác, AB2 = BH.BC (định lí 1)
Theo định lí 3 ta có: AH.BC = AB.AC
Lời giải
ΔABC vuông tại A và đường cao AH như trên hình.
BC = BH + HC = 1 + 2 = 3
Theo định lí 1: AB2 = BH.BC = 1.3 = 3
=> AB = √3
Theo định lí 1: AC2 = HC.BC = 2.3 = 6
=> AC = √6
Vậy độ dài các cạnh góc vuông của tam giác lần lượt là √3 và √6.
Lời giải
- Cách 1: (h.8)
Theo cách dựng, ΔABC có đường trung tuyến AO bằng một nửa cạnh BC, do đó ΔABC vuông tại D.
Vì vậy AH2 = BH.CH hay x2 = ab
Đây chính là hệ thức (2) hay cách vẽ trên là đúng.
- Cách 2: (h.9)
Theo cách dựng, ΔDEF có đường trung tuyến DO bằng một nửa cạnh EF, do đó ΔDEF vuông tại D.
Vậy DE2 = EI.EF hay x2 = a.b
Đây chính là hệ thức (1) hay cách vẽ trên là đúng.
Lời giải
a) Theo định lí 2 ta có:
x2 = 4.9 = 36 => x = 6
b) Vì đường cao chia cạnh huyền thành hai nửa bằng nhau nên nó đồng thời là đường trung tuyến. Mà trong tam giác vuông, đường tuyến bằng nửa cạnh huyền nên nên x = 2.
Theo định lí Pitago ta có:
Lời giải
Xét hai tam giác vuông ADI và CDL có:
AD = CD (cạnh hình vuông)
Nên ΔADI = ΔCDL (cạnh góc cuông và góc nhọn)
Suy ra DI = DL hay ΔDIL cân. (đpcm)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5695 Đánh giá
50%
40%
0%
0%
0%