Câu hỏi:

12/07/2024 19,885

Gieo một con súc sắc cân đối và đồng nhất. giả sử con súc sắc xuất hiện mặt b chấm. Xét phương trình x2 + bx + 2 = 0. Tính xác suất sao cho:

a. Phương trình có nghiệm

b. Phương trình vô nghiệm

c. Phương tring có nghiệm nguyên.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Không gian mẫu khi gieo con súc sắc cân đối và đồng chất:

Ω = {1, 2, 3, 4, 5, 6}

⇒ n(Ω) = 6

Đặt A: "con súc sắc xuất hiện mặt b chấm";

Xét : x2 + bx + 2 = 0 (1)

Δ = b2 – 8

a. Phương trình (1) có nghiệm

⇔ Δ ≥ 0 ⇔ b ≥ 2√2

⇒ b ∈ {3; 4; 5; 6}.

⇒ A = {3, 4, 5, 6}

⇒ n(A) = 4

Giải bài 4 trang 74 sgk Đại số 11 | Để học tốt Toán 11

b. (1) vô nghiệm

⇔ Δ < 0 ⇔ b ≤ 2√2

⇒ b ∈ {1; 2}

⇒ A = {1, 2}

⇒ n(A) = 2

Giải bài 4 trang 74 sgk Đại số 11 | Để học tốt Toán 11

c. phương trình (1) có nghiệm

⇔ b ∈ {3; 4; 5; 6}.

Thử các giá trị của b ta thấy chỉ có b = 3 phương trình cho nghiệm nguyên.

⇒ A = {3}

⇒ n(A) = 1

Giải bài 4 trang 74 sgk Đại số 11 | Để học tốt Toán 11

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Không gian mẫu là kết quả của việc chọn ngẫu nhiên 4 con trong số 52 con

Giải bài tập Đại số 11 | Để học tốt Toán 11

a. Đặt A : « Cả 4 con lấy ra đều là át »

⇒ n(A) = 1

Giải bài tập Đại số 11 | Để học tốt Toán 11

b. + B : « Không có con át nào trong 4 con khi lấy ra »

⇒ B là kết quả của việc chọn ngẫu nhiên 4 con trong số 48 con còn lại

Giải bài tập Đại số 11 | Để học tốt Toán 11

c. C: “Rút được 2 con át và 2 con K”.

Giải bài tập Đại số 11 | Để học tốt Toán 11

Lời giải

a. Không gian mẫu gồm 36 kết quả đồng khả năng xuất hiện, được mô tả như sau:

Ta có: Ω = {(i, j) | 1 ≤ i , j ≤ 6}, trong đó i, j lần lượt là số chấm xuất hiện trong lần gieo thứ nhất và thứ hai, n(Ω) = 36.

b. A = {(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)} ⇒ n(A) = 6

Giải bài 1 trang 74 sgk Đại số 11 | Để học tốt Toán 11

B = {(1, 5), (2, 5), (3, 5), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 5)}

Giải bài 1 trang 74 sgk Đại số 11 | Để học tốt Toán 11

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP