Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Đặt un = 3n3 + 15n
+ Với n = 1 ⇒ u1 = 18 ⋮ 9.
+ Giả sử với n = k ≥ 1 ta có: uk = (3k3 + 15k) ⋮ 9
⇒ uk+1 = 3(k + 1)3 + 15(k + 1 )
= 3(k3 + 3k2 + 3k + 1) + 15k + 15
= (3k3 + 15k) + 9k2 + 9k + 18
= (3k3 + 15k) + 9(k2 + k + 2)
= uk + 9(k2 + k + 2)
Mà uk ⋮ 9 và 9(k2 + k + 2) ⋮ 9
⇒ uk + 1 ⋮ 9.
Vậy un = 3n3 + 15n ⋮ 9 ∀n ∈ N*
Đã bán 104
Đã bán 211
Đã bán 1k
Đã bán 218
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Người ta thiết kế một cái tháp gồm 11 tầng. Diện tích bề mặt trên của mỗi tầng bằng nửa diện tích của mặt trên của tầng ngay bên dưới và diện tích bề mặt trên của tầng một bằng nữa diện tích đế tháp. Biết diện tích mặt đế tháp là 12288m2. Tính diện tích mặt trên cùng.
Câu 6:
Biết rằng ba số x, y, z lập thành một cấp số nhân và ba số x, 2y, 3z lập thành một cấp số cộng. Tìm công bội của cấp số nhân.
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận
Phương Trang Ngô
19:21 - 30/10/2021
3n^3+15n=n(n^2+5)=3n(n^2 -1+5)=3n(n-1)(n+1) +18n n(n-1)(n+1) là tích của ba số tự nhiên liên tiếp nên có ít nhất 1 số là bội của 3 nên chia hết cho 3,có ít nhất 1 số là bội của 2 nên chia hết cho 2 mà(2;3)=1 nên n(n-1)(n+1) chia hết cho 6 => 3n(n-1)(n+1) chia hết cho 18 (1) 18n chia hết cho 18 (2) Từ (1) và (2)=> 3n(n-1)(n+1) +18n chia hết cho 18 => 3n^3+15n chia hết cho 18 với mọi n thuộc N