Câu hỏi:

13/07/2024 557

Nêu rõ các bước chứng minh bằng quy nạp toán học và cho ví dụ

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+ Để chứng minh những mệnh đề liên quan đến số tự nhiên n ∈ N* là đúng với mọi n mà không thể thử trực tiếp được thì ta làm như sau:

Bước 1: Kiểm tra mệnh đề đúng với n = 1 .

Bước 2: Giả thiết mệnh đề đúng với một số tự nhiên bất kì n = k ≥ 1. Chứng minh rằng nó cũng đúng với n = k+1.

Bước 3: Kết luận mệnh đề đúng với n ∈ N*.

+ Ví dụ: Chứng minh rằng với mọi n ∈ N* ta có: n3 + 5n chia hết cho 6.

Chứng minh: Đặt P(n) = n3 + 5n.

Với n =1 ⇒ P(1) = 6 ⋮ 6

Giả sử (Pn) chia hết cho 6 đúng với n=k ≥1, nghĩa là, ta có:

P(k) = (k3 + 5k) ⋮ 6.

Ta có: P(k+1) = (k+1)+ 5(k+1) = k3 + 3k2 + 3k + 1 + 5k + 5 = k3 + 5k + 3(k2 + k) + 6

Mặt khác, theo giả thiết quy nạp ta có: k3 + 5k ⋮6.

Hơn nữa k2 + k = k(k+1) : 2 ( hai số tự nhiên tiếp k, k +1 phải có một số chẵn do k(k+1):2).

Do vậy P(k+1)⋮6. Tức mệnh đề đúng với n = k + 1.

Theo nguyên lí quy nạp, ta có P(n) = n3 + 5n chia hết cho 6 với mọi n ∈ N*.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Nêu cách giải phương trình lượng giác cơ bản , cách giải phương trình asinx + bcosx = c.

Xem đáp án » 13/07/2024 32,940

Câu 2:

Cho biết chu kì của mỗi hàm số y = sinx, y = cosx, y = tanx, y = cotx.

Xem đáp án » 13/07/2024 13,814

Câu 3:

Nêu định nghĩa các hàm số lượng giác. Chỉ rõ tập xác định và tập giá trị của từng hàm số đó.

Xem đáp án » 13/07/2024 12,515

Câu 4:

Viết tất cả các quy tắc tính đạo hàm đã học

Xem đáp án » 13/07/2024 3,333

Câu 5:

Phát biểu định nghĩa đạo hàm của hàm số y=fx tại x=xo.

Xem đáp án » 13/07/2024 2,983

Câu 6:

Viết công thức tính số chỉnh hợp chập k của n phần tử, công thức tính số tổ hợp chập k của n phần tử. Cho ví dụ.

Xem đáp án » 13/07/2024 2,868

Câu 7:

Viết công thức tính số hoán vị của tập hợp gồm n phần tửn > 1. Nêu ví dụ.

Xem đáp án » 13/07/2024 2,630

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn