Câu hỏi:
12/07/2024 2,742Cho hai điểm A, B và đường tròn tâm O không có điểm chung với đường thẳng AB. Qua mỗi điểm M chạy trên đường tròn (O) dựng hình bình hành MABN. Chứng minh rằng điểm N thuộc một đường tròn xác định.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Vậy khi M di chuyển trên đường tròn (O; R) thì N di chuyển trên đường tròn (O’ ; R) là ảnh của (O ; R) qua phép tịnh tiến theo
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho lục giác đều ABCDEF tâm O. Tìm ảnh của tam giác AOF.
a. Qua phép tịnh tiến theo vectơ AB
b. Qua phép đối xứng qua đường thẳng BE.
c. Qua phép quay tâm O góc quay .
Câu 2:
Trong mặt phẳng tọa độ Oxy cho điểm A(-1;2) và đường thẳng d có phương trình . Tìm ảnh của A và d.
a. Qua phép tịnh tiến theo vectơ v=(2;1);
b. Qua phép đối xứng trục Oy;
c. Qua phép đối xứng qua gốc tọa độ;
d. Qua phép quay tâm O góc .
Câu 3:
Trong mặt phẳng tọa độ Oxy, cho đường tròn tâm I(3;-2), bán kính 3.
a. Viết phương trình của đường tròn đó.
b. Viết phương trình ảnh của đường tròn (I;3) qua phép tịnh tiến theo vectơ v=(-2 ;1).
c. Viết phương trình ảnh của đường tròn (I;3) qua phép đối xứng trục Ox.
d. Viết phương trình ảnh của đường tròn (I;3) qua phép đối xứng qua gốc tọa độ
Câu 4:
Trong mặt phẳng tọa độ Oxy, cho đường tròn tâm I(1;-3), bán kính 2. Viết phương trình ảnh của đường tròn (I;2) qua phép đồng dạng có đưuọc từ việc thực hiện liên tiếp phép vị tự tâm O tỉ số 3 và phép đối xứng qua trục Ox.
Câu 5:
Cho hình chữ nhật ABCD. Gọi O là tâm đối xứng của nó. Gọi I, F, J, E lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Tìm ảnh của tam giác AEO qua phép đồng dạng có được từ việc thực hiện liên tiếp phép đối xứng qua đường thẳng IJ và phép vị tự tâm B, tỉ số 2.
Câu 6:
Cho vectơ đường thẳng d vuông góc với giá của . Gọi d’ là ảnh của d qua phép tịnh tiến theo vectơ . Chứng minh rằng phép tịnh tiến theo vectơ là kết quả của việc thực hiện liên tiếp phép đối xứng qua các đường thẳng d và d’.
Hướng dẫn. Dùng định nghĩa phép tịnh tiến và phép đối xứng trục.
về câu hỏi!