Câu hỏi:

12/07/2024 29,975

Cho ba đường thẳng d1, d2, d3 không cùng nằm trong một mặt phẳng và cắt nhau từng đôi một. Chứng minh ba đường thẳng trên đồng quy.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi I = d1 ∩ d2; (P) là mặt phẳng chứa (d1) và (d2).

Gọi d3 ∩ d1 = M; d3 ∩ d2 = N.

+ M ∈ d1, mà d1 ⊂ (P) ⇒ M ∈ (P)

+ N ∈ d2, mà d2 ⊂ (P) ⇒ N ∈ (P).

Nếu M ≠ N ⇒ d3 có hai điểm M, N cùng thuộc (P)

⇒ d3 ⊂ (P)

⇒ d1; d2; d3 đồng phẳng (trái với giả thiết).

⇒ M ≡ N

⇒ M ≡ N ≡ I

Vậy d1; d2; d3 đồng quy.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải bài 6 trang 54 sgk Hình học 11 | Để học tốt Toán 11

a) Ta có:

Giải bài 6 trang 54 sgk Hình học 11 | Để học tốt Toán 11

⇒ NP và CD không song song với nhau.

Gọi giao điểm NP và CD là I.

I ∈ NP ⇒ I ∈ (MNP).

Mà I ∈ CD

Vậy I ∈ CD ∩ (MNP)

b) Trong mặt phẳng (ACD) thì AD và MI cắt nhau tại điểm J:

J ∈ AD ⇒ J ∈ (ACD)

J ∈ MI ⇒ J ∈ (MNP)

Vậy J là một điểm chung của hai mặt phẳng (ACD) và (MNP).

Ta đã có M là một điểm chung của hai mặt phẳng (ACD) và (MNP).

 

Vậy MJ = (ACD) ∩ (MNP).

Lời giải

Giải bài 10 trang 54 sgk Hình học 11 | Để học tốt Toán 11

a) SM, CD cùng thuộc (SCD) và không song song.

Gọi N là giao điểm của SM và CD.

⇒ N ∈ CD và N ∈ SM

Mà SM ⊂ (SMB)

⇒ N ∈ (SMB)

⇒ N = (SMB) ∩ CD.

b) N ∈ CD ⊂ (ABCD)

⇒ BN ⊂ (ABCD)

⇒ AC; BN cùng nằm trong (ABCD) và không song song

Gọi giao điểm của AC và BN là H.

+ H ∈ AC ⊂ (SAC)

+ H ∈ BN ⊂ (SBM)

⇒ H ∈ (SAC) ∩ (SBM)

Dễ dàng nhận thấy giao điểm thứ hai của (SAC) và (SBM) là S

⇒ (SAC) ∩ (SBM) = SH.

c) Trong mp(SBM), gọi giao điểm của BM và SH là I, ta có:

I ∈ BM

I ∈ SH ⊂ (SAC).

 

⇒ I = BM ∩ (SAC).

) Trong mp(SAC), gọi giao điểm của AI và SC là P.

+ P ∈ AI, mà AI ⊂ (AMB) ⇒ P ∈ (AMB)

⇒ P = (AMB) ∩ SC.

Lại có P ∈ SC, mà SC ⊂ (SCD) ⇒ P ∈ (SCD).

⇒ P ∈ (AMB) ∩ (SCD).

Lại có: M ∈ (SCD) (gt)

⇒ M ∈ (MAB) ∩ (SCD)

Vậy giao điểm của (MAB) và (SCD) là đường thẳng MP.