Câu hỏi:

07/04/2020 32,697

Cho tứ diện ABCD. Gọi M, N, P lần lượt là trung điểm của AB, AC, AD. Các đường thẳng MN, NP, PM có song song với mặt phẳng (BCD) không?

Giải bài tập Toán 11 | Giải Toán lớp 11

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì M, N, P lần lượt là trung điểm của AB, AC, AD nên MN, NP, MP lần lượt là đường trung bình của tam giác ABC, ACD, ABD

⇒ MN//BC, NP//CD, PM //BD

Mà BC, CD, BD thuộc (BCD)

MN, NP, PM không thuộc (BCD)

⇒ Các đường thẳng MN, NP, PM có song song với mặt phẳng (BCD)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Do các tứ giác ABCD và ABEF là các hình bình hành

=> O là trung điểm của AC và BD

và O’ là trung điểm của AE và BF. (tính chất hình bình hành).

Giải bài tập Đại số 11 | Để học tốt Toán 11

+ ΔBFD có OO’ là đường trung bình nên OO’ // DF

mà DF ⊂ (ADF)

⇒ OO' // (ADF)

+ ΔAEC có OO’ là đường trung bình nên OO’ // EC

mà EC ⊂ (BCE)

⇒ OO’ // (BCE).

b)

Giải bài tập Đại số 11 | Để học tốt Toán 11

Ta thấy mp(CEF) chính là mp(CEFD).

Gọi I là trung điểm của AB:

+ M là trọng tâm ΔABD

⇒ IM/ ID = 1/3.

+ N là trọng tâm ΔABE

⇒ IN/IE = 1/3.

+ ΔIDE có IM/ID = IN/IE = 1/3

⇒ MN // DE mà ED ⊂ (CEFD)

nên MN // (CEFD) hay MN // (CEF).

Lời giải

Giải bài tập Đại số 11 | Để học tốt Toán 11

a) + (α) // AC

⇒ Giao tuyến của (α) và (ABC) là đường thẳng song song với AC.

Mà M ∈ (ABC) ∩ (α).

⇒ (ABC) ∩ (α) = MN là đường thẳng qua M, song song với AC (N ∈ BC).

+ Tương tự (α) ∩ (ABD) = MQ là đường thẳng qua M song song với BD (Q ∈ AD).

+ (α) ∩ (BCD) = NP là đường thẳng qua N song song với BD (P ∈ CD).

+ (α) ∩ (ACD) = QP.

b)Ta có:

Giải bài tập Đại số 11 | Để học tốt Toán 11

Suy ra, tứ giác MNPQ có các cạnh đối song song với nhau nên tứ giác MNPQ là hình bình hành.