Câu hỏi:

13/07/2024 13,112

Chứng tỏ rằng: Trong ba số tự nhiên liên tiếp, có một số chia hết cho 3.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi ba số tự nhiên liên tiếp là a, a + 1, a + 2

Nếu a chia hết cho 3 thì bài toán được chứng minh

Nếu a không chia hết cho 3 thì a = 3k + 1 hoặc a = 3k + 2 (k ∈ N)

Nếu a = 3k + 1 thì a + 2 = 3k + 1 + 2 = 3k + 3 ⋮ 3

(vì 3k ⋮ 3 và 3 ⋮ 3 nên 3k + 3 ⋮ 3)

Nếu a = 3k + 2 thì a + 1 = 3k + 2 + 1 = 3k + 3 ⋮ 3

(vì 3k ⋮ 3 và 3 ⋮ 3 nên 3k + 3 ⋮ 3)

Vậy trong ba số tự nhiên liên tiếp, có một số chia hết cho 3

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng tỏ rằng: Trong hai số tự nhiên liên tiếp, có một số chia hết cho 2.

Xem đáp án » 13/07/2024 10,244

Câu 2:

Cho tổng A = 12 + 15 + 21 + x, với x ∈ N. Tìm điều kiện của x để A chia hết cho 3, để A không chia hết cho 3.

Xem đáp án » 13/07/2024 8,286

Câu 3:

Khi chia số tự nhiên a cho 24, ta được số dư là 10. Hỏi số a có chia hết cho 2 không? Có chia hết cho 4 không?

Xem đáp án » 13/07/2024 7,604

Câu 4:

Chứng tỏ rằng: Tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3

Xem đáp án » 13/07/2024 6,424

Câu 5:

Chứng tỏ rằng số có dạng (abcabc) bao giờ cũng chia hết cho 11 ( chẳng hạn 328328 ⋮11)

Xem đáp án » 13/07/2024 4,441

Câu 6:

Chứng tỏ rằng số có dạng aaa bao giờ cũng chia hết cho 37.

Xem đáp án » 13/07/2024 4,223

Bình luận


Bình luận

Ngọc Quý Bùi
21:19 - 26/10/2023

câu này phải có ghi chú là a thuộc n* chư ko thì a=0 rồi tính toán gì nữa(0,1,2)

Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn