Câu hỏi:

12/07/2024 54,860

Hãy chứng minh định lí:

Nếu một đường thẳng cắt hai đường thẳng song song thì hai góc đồng vị bằng nhau.

Hướng dẫn: chứng minh tương tự bài tập 30.

Câu hỏi trong đề:   Sách bài tập Toán 7 Tập 1 !!

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Nếu một đường thẳng cắt hai đường thẳng song song thì hai góc đồng vị (ảnh 1)

Kẻ đường thẳng xy đi qua B sao cho ABy^=A1^

Mà hai góc này ở vị trí so le trong nên theo dấu hiệu của hai đường thẳng song song, ta có: xy // a.

Qua điểm B ta kẻ được hai đường thẳng b và xy cùng song song với đường thẳng a. Theo tiên đề Ơ – clit suy ra đường thẳng xy trùng với đường thẳng b.

Vậy ABy^=A1^ nên A1^=B1^.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Với hai góc kề bù ta có định lý sau: Hai tia phân giác của hai góc kề bù tạo thành một góc vuông

Hãy viết giả thiết và kết luận của định lí

Xem đáp án » 12/07/2024 43,015

Câu 2:

Ghi giả thiết, kết luận và chứng minh định lý: “ Hai góc cùng phụ với một góc thứ ba thì bằng nhau ”.

Xem đáp án » 12/07/2024 34,948

Câu 3:

Chứng minh rằng: 

Nếu hai góc nhọn xOy và x’Oy’ có Ox// O’x’; Oy//O’y’ thì ∠(xOy) = ∠(x'O'y')

Hướng dẫn: sử dụng tính chất của hai đường thẳng song song (bài 5)

Xem đáp án » 12/07/2024 10,629

Câu 4:

Ghi giả thiết, kết luận và chứng minh định lý: “ Nếu hai đường thẳng a, b cắt đường thẳng c và trong các góc tạo thành có một cặp trong cùng phía bù nhau thì a và b song song với nhau”.

Xem đáp án » 12/07/2024 5,088

Câu 5:

Vẽ hình và viết giả thiết, kết luận của các định lý sau: Nếu một đường thẳng cắt một trong hai đường thẳng song song thì nó cắt đường thẳng kia

Xem đáp án » 12/07/2024 4,704

Câu 6:

Ghi giả thiết, kết luận và chứng minh định lý: “ Hai góc cùng bù với một góc thứ ba thì bằng nhau”.

Xem đáp án » 12/07/2024 3,351

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store