Câu hỏi:

13/07/2024 14,773 Lưu

Cho hai tam giác ABC và ABD có AB = BC = CA = 3cm, AD = BD = 2cm (C và D nằm khác phía đối với AB). Chứng minh rằng: ∠(CAD) =∠(CBD)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét ΔCAD và ΔCBD, ta có:

AC = BC (= 3 cm)

AD = BD (= 2 cm)

CD cạnh chung

Suy ra: ΔCAD= ΔCBD(c.c.c)

Vậy ∠(CAD) =∠(CBD) ̂(hai góc tương ứng)

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Nguyễn Cảnh Thịnh

Nguyễn Cảnh Thịnh

=v sai

Nguyễn Cảnh Thịnh

Nguyễn Cảnh Thịnh

ok

Nguyễn Cảnh Thịnh

Nguyễn Cảnh Thịnh

ok

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét ΔAMB và ΔAMC, ta có:

AB = AC (gt)

BM = CM (vì M là trung điểm BC)

AM cạnh chung

Suy ra: ΔAMB= ΔAMC(c.c.c)

⇒ ∠(AMB) =∠(AMC) ̂(hai góc tương ứng)

Ta có: ∠(AMB) +∠(AMC) =180o (hai góc kề bù)

∠(AMB) =∠(AMC) =90o. Vậy AM ⏊ BC

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Lời giải

Xét ΔABC và ΔCDA, ta có:

AB = CD (theo cách vẽ)

AC cạnh chung

BC = AD (theo cách vẽ)

Suy ra: ΔABC = ΔCDA (c.c.c) ⇒ ∠(ACB) =∠(CAD) (hai góc tương ứng)

Vậy AD // BC ( vì có cặp góc so le trong bằng nhau)

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP