Câu hỏi:

13/07/2024 962

Chứng minh rằng nếu trong tam giác ABC có hai cạnh AB và AC không bằng nhau thì đường trung tuyến xuất phát từ đỉnh A không vuông góc với BC.

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì AM là đường trung tuyến của tam giác ABC nên M là trung điểm của cạnh BC.

Giả sử AM ⊥ BC. Khi đó AM là đường trung trực của đoạn thẳng BC. Suy ra AB = AC. Điều này mâu thuẫn với giả thiết AB ≠ AC. Vậy trung tuyến AM không vuông góc với BC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì Ox là đường trung trực của AB nên:

OB = OA (t/chất đường trung trực) (1)

Vì Oy là đường trung trực của AC nên:

OA = OC (t/chất đường trung trực) (2)

Tư (1) và (2) suy ra: OB = OC.

Lời giải

Vì AC = AD (gt) nên A thuộc đường trung trực của CD.

Vì BC = BD (gt) nên B thuộc đường trung trực của CD.

Vì A ≠ B nên AB là đường trung trực của CD.

Vậy AB ⊥ CD.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP