Câu hỏi:
13/07/2024 2,763Cho đường thẳng d và hai điểm A, B nằm về một phía của d sao cho AB không vuông góc với d. Hãy tìm trên d một điểm M sao cho |MA−MB| có giá trị nhỏ nhất.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Ta có |MA − MB| ≥ 0 với một điểm M tùy ý và |MA − MB| = 0 chỉ với các điểm M mà MA = MB, tức là chỉ với các điểm M nằm trên đường trung trực của đoạn thẳng AB.
Mặt khác M phải thuộc d. Vậy M là giao điểm của đường thẳng d và đường trung trực của đoạn thẳng AB. Có giao điểm này vì AB không vuông góc với d.
Tóm lại: Khi M là giao điểm của d và đường trung trực của đoạn thẳng AB thì |MA − MB| đạt giá trị nhỏ nhất và bằng 0.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho góc xOy bằng 60o, điểm A nằm trong góc xOy. Vẽ điểm B sao cho Ox là đường trung trực của AB. Vẽ điểm C sao cho Oy là đường trung trực của AC. Chứng minh rằng OB = OC.
Câu 3:
Cho hai điểm D, E nằm trên đường trung trực của đoạn thẳng BC. Chứng minh rằng ΔBDE = ΔCDE.
Câu 4:
Đường trung trực của cạnh BC trong tam giác ABC cắt cạnh AC tại D. Hãy tìm: AD và CD nếu BD = 5cm; AC = 8cm
Câu 5:
Trong tam giác ABC, hai đường trung trực của hai cạnh AB và AC cắt nhau tại điểm D nằm trên cạnh BC. Chứng minh rằng: ∠A = ∠B + ∠C.
Câu 6:
Cho đường thẳng d và hai điểm A, B thuộc cùng một nửa mặt phẳng có bờ d. Tìm một điểm C nằm trên d sao cho C cách đều A và B.
Câu 7:
Trên đường trung trực của đoạn thẳng AB, lấy hai điểm phân biệt M, N. Khi đó khẳng định nào sau đây đúng?
(A) ∠(AMN) ≠ ∠(BMN)
(B) ∠(MAN) ≠ ∠(MBN)
(C) ∠(MNA) ≠ ∠(MNB)
(D) ΔAMN = ΔBMN
về câu hỏi!