Câu hỏi:

13/07/2024 5,706 Lưu

Cho tam giác ABC có BC = 7, (ABC) = 42°(ACB) = 35°. Gọi H là chân đường cao của tam giác ABC kẻ từ A. Hãy tính AH (làm tròn kết quả đến chữ số thập phân thứ ba).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Đặt AH = h thì rõ ràng BH = h.cotg (ABH) = h. cotg42°

CH = h.cotg (ACH) = h.cotg35° (để ý rằng H thuộc đoạn BC vì 35°,42° đều là góc nhọn).

Do đó: 7 = BC = BH + CH = h(cotg42° + cotg35°), suy ra

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có:

AH2=HB.HC

Suy ra:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP