Câu hỏi:

12/07/2024 2,103

Cho đường tròn (C) và hai điểm cố định phân biệt A, B thuộc (C). Với mỗi điểm M chạy trên đường tròn (trừ hai điểm A, B), ta xét điểm N sao cho ABMN là hình bình hành. Chứng minh rằng tập hợp các điểm N cũng nằm trên một đường tròn xác định.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tập hợp các điểm N thuộc đường tròn (C') là ảnh của (C) qua phép đối xứng qua trung điểm của AB.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lấy điểm N(x1; y1), thì điểm N(2x1  1; 2y1 + 3) = F(N) . Ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ đó suy ra với hai điểm M, N tùy ý và M', N' lần lượt là ảnh của chúng qua F ta có M′N′ = 2MN. Vậy F là phép đồng dạng với tỉ số đồng dạng là 2.

Lời giải

Gọi M′(x′;y′) ∈ d′ là ảnh của M(x,y) ∈ d qua phép tịnh tiến theo vecto v(2;3)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do M(x,y) ∈ d nên

3x − 5y + 3 = 0

⇒ 3(x′−2) − 5(y′−3) + 3 = 0

⇔ 3x′ − 5y′ + 12 = 0 (d′)

Vậy M′(x′;y′) ∈ d′: 3x′ − 5y′ + 12 = 0

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP