Câu hỏi:

12/07/2024 5,083

Cho tứ diện ABCD và điểm M nằm trong tam giác BCD.

a) Dựng đường thẳng qua M song song với hai mặt phẳng (ABC) và (ABD). Giả sử đường thẳng này cắt mặt phẳng (ACD) tại B'.

Chứng minh rằng AB', BM và CD đồng quy tại một điểm.

b) Chứng minh MB'BA = dtMCDdtBCD

c) Đường thẳng song song với hai mặt phẳng (ACB) và (ACD) kẻ từ M cắt (ABD) tại C' và đường thẳng song song với hai mặt phẳng (ADC) và (ADB) kẻ từ M cắt (ABC) tại D'. Chứng minh rằng MB'BA + MC'CA + MD'DA = 1

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) MB' qua M và song song với (ABC) và (ABD) ⇒ MB′ song song với giao tuyến AB của hai mặt phẳng này. Ta có: MB′ // AB nên MB' và AB xác định một mặt phẳng. Giả sử MB cắt AB' tại I.

Ta có: I ∈ BM ⇒ I ∈ (BCD)

I ∈ AB′ ⇒ I ∈ (ACD)

Nên I ∈ (BCD) ∩ (ACD) = CD

Có: I ∈ CD

Vậy ba đường thẳng AB', BM và CD đồng quy tại I.

b) MB′ // AB Giải sách bài tập Toán 11 | Giải sbt Toán 11

Kẻ MM′ ⊥ CD và BH ⊥ CD

Ta có: MM′ // BH Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mặt khác:

Giải sách bài tập Toán 11 | Giải sbt Toán 11 Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó: Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Tương tự ta có: Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình hộp ABCD.A’B’C’D’. Hai điểm M và N lần lượt nằm trên hai cạnh AD và CC’ sao cho: AMMD = CNNC'

 a) Chứng minh rằng đường thẳng MN song song với mặt phẳng (ACB’)

 

 b) Xác định thiết diện của hình hộp cắt bởi mặt phẳng đi qua MN và song song với mặt phẳng (ACB’)

Xem đáp án » 12/07/2024 10,431

Câu 2:

Cho hình hộp ABCD.A'B'C'D'. Gọi M và N lần lượt là trung điểm của hai cạnh bên AA' và CC'. Một điểm P nằm trên cạnh bên DD'.

a) Xác định giao điểm Q của đường thẳng BB' với mặt phẳng (MNP).

b) Mặt phẳng (MNP) cắt hình hộp theo một thiết diện. Thiết diện đó có tính chất gì?

c) Tìm giao tuyến của mặt phẳng (MNP) với mặt phẳng (ABCD) của hình hộp.

Xem đáp án » 12/07/2024 9,913

Câu 3:

Cho hình lập phương ABCD.A'B'C'D' các trung điểm E, F của các cạnh AB, DD'. Hãy xác định các thiết diện của hình lập phương cắt bởi các mặt phẳng (EFB), (EFC), (EFC') và (EFK) với K là trung điểm của cạnh B'C'.

Xem đáp án » 12/07/2024 5,594

Câu 4:

Từ các đỉnh của tam giác ABC ta kẻ các đoạn thẳng AA', BB', CC' song song cùng chiều, bằng nhau và không nằm trong mặt phẳng của tam giác. Gọi I, G và K lần lượt là trọng tâm của các tam giác ABC, ACC', A'B'C'.

a) Chứng minh (IGK) // (BB′CC′).

b) Chứng minh rằng (A′GK) // (AIB′).

Xem đáp án » 12/07/2024 3,917

Câu 5:

Cho hình lăng trụ tứ giác ABCD.A'B'C'D'.

a) Chứng minh rằng hai đường chéo AC' và A'C cắt nhau và hai đường chéo BD' và B'Dcắt nhau.

b) Cho E và F lần lượt là trung điểm của hai đường chéo AC và BD.Chứng minh MN = EF.

Xem đáp án » 12/07/2024 3,423

Câu 6:

Trong mặt phẳng (α) cho tam giác ABC. Từ ba đỉnh của tam giác này ta kẻ các nửa đường thẳng song song cùng chiều Ax, By, Cz không nằm trong (α). Trên Ax lấy đoạn AA' = a, trên By lấy đoạn BB' = b, trên Cz lấy đoạn CC' = c.

a) Gọi I, J và K lần lượt là các giao điểm B'C', C'A' và A'B' với (α).

Chứng minh rằng IBIC. JCJA.KAKB = 1

b) Gọi G và G' lần lượt là trọng tâm của các tam giác ABC và A'B'C'.

Chứng minh: GG′ // AA′.

c) Tính GG' theo a, b, c

Xem đáp án » 12/07/2024 2,845

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store