Câu hỏi:

12/07/2024 4,236

Từ các đỉnh của tam giác ABC ta kẻ các đoạn thẳng AA', BB', CC' song song cùng chiều, bằng nhau và không nằm trong mặt phẳng của tam giác. Gọi I, G và K lần lượt là trọng tâm của các tam giác ABC, ACC', A'B'C'.

a) Chứng minh (IGK) // (BB′CC′).

b) Chứng minh rằng (A′GK) // (AIB′).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Gọi M và M’ tương ứng là trung điểm của AC và A’C’, ta có:

I ∈ BM, G ∈ C′M, K ∈ B′M′

Theo tính chất trọng tâm của tam giác ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta có :

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mặt khác IG và IK ⊂ (IGK) nên (IGK) // (BB′C′C)

b) Gọi E và F tương ứng là trung điểm của BC và B’C’, O là trung điểm của A’C. A, I, E thẳng hàng nên (AIB’) chính là (AEB’). A’, G, C thẳng hàng nên (A’GK) chính là (A’CF).

Ta có B′E // CF (do B’FCE là hình bình hành ) và AE // A′F nên (AIB′) // (A′GK).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Vẽ MP song song với AC và cắt CD tại P

 Ta có: Giải sách bài tập Toán 11 | Giải sbt Toán 11

 Do đó PN // DC′ // AB′

 Đường thẳng MN thuộc mặt phẳng (MNP) và mặt phẳng này có MP // AC và PN // AB′. Vậy mặt phẳng(MNP) song song với mặt phẳng (ACB’) và do đó MN // (ACB′)

 b) Vì mặt phẳng (MNP) song song với mặt phẳng (ACB’) nên hai mặt phẳng đó cắt các mặt bên của hình hộp theo các giao tuyến song song.

 Ta vẽ NQ // CB′, QR // C′A′ ((// CA), RS //AB′ (//PN) và tất nhiên SM // QN. Thiết diện của hình hộp cắt bởi mặt phẳng đi qua MN và song song với mặt phẳng (ACB’) là hình lục giác MPNQRS có các cạnh đối diện song song với nhau từng đôi một: MP // RQ, PN //SR, NQ // MS.

Lời giải

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có mặt phẳng (AA', DD') song song với mặt phẳng (BB', CC'). Mặt phẳng (MNP) cắt hai mặt phẳng nói trên theo hai giao tuyến song song.

Nếu gọi Q là điểm trên cạnh BB' sao cho NQ // PM thì Q là giao điểm của đường thẳng BB' với mặt phẳng (MNP)

Nhận xét. Ta có thể tìm điểm Q bằng cách nối P với trung điểm I của đoạn MN và đường thẳng PI cắt BB' tại Q.

b) Vì mặt phẳng (AA', BB') song song với mặt phẳng (DD', CC') nên ta có MQ // PN. Do đó mặt phẳng (MNP) cắt hình hộp theo thiết diện MNPQ là một ình bình hành.

Giả sử P không phải là trung điểm của đoạn DD'. Gọi H = PN ∩ DC , K = MP ∩ AD. Ta có D = HK là giao tuyến của mặt phẳng (MNP) với mặt phẳng (ABCD) của hình hộp.

Chú ý rằng giao điểm E = AB ∩ MQ cũng nằm trên giao tuyến d nói trên. Khi P là trung điểm của DD' mặt phẳng (MNP) song song với mặt phẳng (ABCD).