Câu hỏi:

12/07/2024 9,846

Hình hộp ABCD.A'B'C'D' có tất cả các cạnh đều bằng nhau. Chứng minh rằng AC ⊥ B'D', AB' ⊥ CD' và AD' ⊥ CB'. Khi mặt phẳng (AA'C'C) vuông góc với mặt phẳng (BB'D'D)?

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Theo giả thiết các mặt của hình hộp đều là hình thoi.

Ta có ABCD là hình thoi nên AC ⊥ BD

Theo tính chất của hình hộp: BD // B'D', do đó AC ⊥ B'D'.

Chứng minh tương tự ta được AB' ⊥ CD', AD' ⊥ CB'

Hai mặt phẳng (AA'C'C) và (BB'D'D) vuông góc với nhau khi hình hộp ABCD.A'B'C'D'là hình lập phương.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hình chóp S.ABCD có đáy là hình thang vuông ABCD vuông tại A và D, có AB = 2a, AD = DC = a, có cạnh SA vuông góc với mặt phẳng (ABCD) và SA = a.

a) Chứng minh mặt phẳng (SAD) vuông góc với mặt phẳng (SDC), mặt phẳng (SAC) vuông góc với mặt phẳng (SCB).

b) Gọi φ là góc giữa hai mặt phẳng (SBC) và (ABCD), tính tanφ.

c) Gọi (α) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC). Hãy xác định (α) và xác định thiết diện của hình chóp S.ABCD với (α)

Xem đáp án » 12/07/2024 128,813

Câu 2:

Chứng minh rằng nếu tứ diện ABCD có AB ⊥ CD và AC ⊥ BD thì AD ⊥ BC.

Xem đáp án » 12/07/2024 17,976

Câu 3:

Tứ diện SABC có ba đỉnh A, B, C tạo thành tam giác vuông cân đỉnh B và AC = 2a, có cạnh SA vuông góc với mặt phẳng (ABC) và SA = a

a) Chứng minh mặt phẳng (SAB) vuông góc với mặt phẳng (SBC).

b) Trong mặt phẳng (SAB) vẽ AH vuông góc với SB tại H, chứng minh AH ⊥ (SBC).

C) Tính độ dài đoạn AH.

d) Từ trung điểm O của đoạn AC vẽ OK vuông góc với (SBC) cắt (SBC) tại K. Tính độ dài đoạn OK.

Xem đáp án » 12/07/2024 6,823

Câu 4:

Hình chóp S.ABCD có đáy là hình vuông ABCD tâm O và có cạnh SA vuông góc với mặt phẳng (ABCD). Giả sử (α) là mặt phẳng đi qua A và vuông góc với cạnh SC, (α) cắt SC tại I.

a) Xác định giao điểm K của SO với mặt phẳng (α).

b) Chứng minh mặt phẳng (SBD) vuông góc với mặt phẳng (SAC) và BD // (α).

c) Xác định giao tuyến d của mặt phẳng (SBD) và mặt phẳng (α). Tìm thiết diện cắt hình chóp S.ABCD bởi mặt phẳng (α).

Xem đáp án » 12/07/2024 5,793

Câu 5:

Cho tứ diện ABCD có ba cặp cạnh đối diện bằng nhau là AB = CD, AC = BD và AD = BC. Gọi M và N lần lượt là trung điểm của AB và CD. Chứng minh MN ⊥ AB và MN ⊥ CD. Mặt phẳng (CDM) có vuông góc với mặt phẳng (ABN) không? Vì sao?

Xem đáp án » 12/07/2024 5,753

Câu 6:

Tứ diện SABC có SA vuông góc với mặt phẳng (ABC). Gọi H và K lần lượt là trực tâm của các tam giác ABC và SBC. Chứng minh rằng:

 a) AH, SK và BC đồng quy.

 b) SC vuông góc với mặt phẳng (BHK) và (SAC) ⊥ (BHK)

 c) HK vuông góc với mặt phẳng (SBC) và (SBC) ⊥ (BHK)

Xem đáp án » 12/07/2024 5,709

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store