Câu hỏi:

12/07/2024 2,867

Cho tứ diện ABCD. Chứng minh rằng AB vuông góc với CD khi và chỉ khi AC2 + BD2 = AD2 + BC2

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả sử AB ⊥ CD ta phải chứng minh:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Thật vậy, kẻ BE ⊥ CD tại E, do AB⊥CD ta suy ra CD ⊥ (ABE) nên CD ⊥ AE. Áp dụng định lí Py-ta-go cho các tam giác vuông AEC, BEC, AED và BED ta có:

Nếu AC2  AD2 = BC2  BD2 = k2 thì trong mặt phẳng (ACD) điểm A thuộc đường thẳng vuông góc với CD tại điểm H trên tia ID với I là trung điểm của CD sao cho Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tương tự điểm B thuộc đường thẳng vuông góc với CD cũng tại điểm H nói trên. Từ đó suy ra CD vuông góc với mặt phẳng (ABH) hay CD ⊥ AB.

Nếu AC2  AD2 = BC2  BD2 =- k2 thì ta có và đưa về trường hợp xét như trên AC2  AD2 = BC2  BD2 = -k2.

Chú ý. Từ kết quả của bài toán trên ta suy ra:

Tứ diện ABCD có các cặp cạnh đối diện vuông góc với nhau khi và chỉ khi AB2 + CD2 = AC2 + BC2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai tia Ax và By vuông góc với nhau nhận AB làm đoạn vuông góc chung. Gọi M và N là hai điểm di động lần lượt trên Ax và By sao cho AM + BN = MN.

Đặt AB = 2a, gọi O là trung điểm của AB và H là hình chiếu vuông góc điểm O trên đường thẳng MN

a) Chứng minh rằng OH = a, HM = AN, HN = BN.

b) Gọi Bx' là tia song song và cùng chiều với tia Ax và K là hình chiếu vuông góc của H trên mặt phẳng (Bx'; By). Chứng minh BK là phân giác của góc ∠x'By.

C. Chứng minh điểm H nằm trên một đường tròn cố định.

Xem đáp án » 12/07/2024 2,638

Câu 2:

Hình chóp tam giác S.ABC có đáy là tam giác đều ABC cạnh 7a, có cạnh SC vuông góc với mặt phẳng đáy (ABC) và SC = 7a.

a) Tính góc giữa SA và BC.

b) Tính khoảng cách giữa hai đường thẳng chéo nhau SA và BC.

Xem đáp án » 04/05/2020 2,050

Câu 3:

Trong các khẳng định sau đây khẳng định nào đúng? khẳng định nào sai?

a) Cho hai đường thẳng a và b song song với nhau. Nếu có một đường thẳng d vuông góc với a thì d vuông góc với b.

b) Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song với nhau.

c) Một mặt phẳng (α) và một đường thẳng a cùng vuông góc với đường thằng b thì a // (α).

d) Hai mặt phẳng (α) và (β) phân biệt cùng vuông góc với một mặt phẳng (γ) thì (α) // (β).

e) Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì chúng song song với nhau.

f) Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì chúng song song.

Xem đáp án » 12/07/2024 1,729

Câu 4:

Cho hình lập phương ABCD.A'B'C'D'. Hãy tính góc của các cặp đường thẳng sau đây:

a) AB' và BC'

b) AC' và CD'

Xem đáp án » 12/07/2024 1,715

Câu 5:

Trên mặt phẳng (α) cho hình vuông ABCD. Các tia Ax, By, Cz, Dt vuông góc với mặt phẳng (α) và nằm về một phía đối với mặt phẳng (α). Một mặt phẳng (β) lần lượt cắt Ax, By, Cz, Dt tại A', B', C', D'.

a) Tứ giác A', B', C', D' là hình gì? Chứng minh rằng .

b) Chứng minh rằng điều kiện để tứ giác A', B', C', D' là hình thoi là nó có hai đỉnh đối diện cách đều mặt phẳng (α).

c) Chứng minh rằng điều kiện để tứ giác A', B', C', D' là hình chữ nhật là nó có hai đỉnh kề nhau cách đều mặt phẳng (α).

Xem đáp án » 04/05/2020 922

Câu 6:

Xét các khẳng định sau đây xem khẳng định nào đúng, khẳng định nào sai?

a) Qua một điểm, có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước.

b) Qua một đường thẳng, có duy nhất một mặt phẳng vuông góc với một đường thẳng cho trước.

c) Qua một điểm, có duy nhất một mặt phẳng vuông góc với một đường thẳng cho trước.

d) Cho hai đường thẳng a và b. Nếu có mặt phẳng (α) không chứa cả a và b thì a và b chéo nhau.

Xem đáp án » 04/05/2020 790

Bình luận


Bình luận