Câu hỏi:

04/05/2020 3,116

Cho lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình thoi, AB = a√3, BAD^ = 120o. Góc giữa đường thẳng AC' và mặt phẳng (ADD'A') là 30o. Gọi M là trung điểm A'D', N là trung điểm BB'. Tính khoảng cách từ N đến mặt phẳng (C'MA)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Nhận xét:

Do tam giác A’B’D’ là tam giác đều nên C’M ⊥ A’D’

(C'A'D') ⊥ (AA'D'D) & (C'A'D') ∩(AA'D'D) ⇒ C’M ⊥ (AA’D’D)

Nên ∠(AC',(AA'D'D)) = ∠(C'AM) = 30o.

Gọi K là trung điểm của DD’, ta có AKC’N là hình bình hành nên K với N đối xứng nhau qua trung điểm O của AC’. Mà O ∈ (AMC’), do đó

d[N,(C'MA)] = d[K,(C'MA)]

+ Xác định khoảng cách từ K đến (C’MA).

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do (C’MA) vuông góc với (AA’D’D) theo giao tuyến AM nên kẻ KH ⊥ AM, ta có KH ⊥ (C’MA) hay d[K,(C'MA)] = KH.

+ Tính KH.

Ta có: SAMK = SAA'D'D – (SAA'M + SMD'K + SADK) (1)

Trong tam giác AMC’, ta có: AM = CM.cot30o = (3a3)/2.

Trong tam giác AA’M, ta có: AA = AM2 - A'M2  = a6.

Giải sách bài tập Toán 11 | Giải sbt Toán 11

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Gọi P là trung điểm SA, ta có MPCN là hình bình hành.

Như vậy MN // PC, suy ra MN // (SAC).

Do BD ⊥ (SAC) nên BD ⊥ MN.

Ta có: d(MN, AC) = d(N, (SAC))

Mà C ∈(SAC) & CN/CB = 1/2

Nên d(N, (SAC)) = 1/2 d(B, (SAC)) = 1/2 BO (O là giao điểm của AC và BD).

Vậy d(N, (SAC)) = 1/4a√2.

Lời giải

Giải sách bài tập Toán 11 | Giải sbt Toán 11

+ Xác định góc của SC với (SAD).

Hạ CE ⊥ AD, ta có E là trung điểm AD và CE ⊥ (SAD) nên ∠(CSE) = 30o.

∠(CSE) cũng chính là góc giữa SC và mp(SAD).

Trong ΔCSE, ta có:

SE = CE.tan60o = a3  SA = SE2- AE2 = 3a2 - a2 = a2.

Nhận xét

Gọi M, N lần lượt là trung điểm của AB và AE.

Ta có MN // BE nên MN // CD. Như vậy MN // (SCD). Ta suy ra

d(M,(SCD)) = d(N,(SCD)).

Mà DN/DA = 3/4 nên d(N,(SCD)) = 3/4 d(A,(SCD))

+ Xác định khoảng cách từ A đến (SCD).

Vì vậy tam giác ACD vuông cân tại C nên CD vuông góc với AC.

CD ⊥ AC & CD ⊥ SA ⇒ CD ⊥ (SAC) ⇒ (SCD) ⊥ (SAC).

Hạ AH ⊥ SC, ta có AH ⊥ (SCD).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP