Câu hỏi:
04/05/2020 5,055Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông với AB = BC = a, cạnh bên . Gọi M là trung điểm BC. Tính khoảng cách giữa hai đường thẳng AM, B'C.
Câu hỏi trong đề: Giải sách bài tập Hình học 11 !!
Quảng cáo
Trả lời:
Gọi N là trung điểm của BB’, ta có: CB’ // MN nên CB’ // (AMN). Như vậy
d(BC’, AM) = d(B’, (AMN)) = d(B, (AMN))
(vì B, B’ đối xứng qua N ∈ (AMN)).
Hạ BH ⊥ (AMN), ta có d(B, (AMN)) = BH.
Nhận xét:
Tứ diện B.AMN có ba cạnh BA, BM, BN vuông góc nhau từng đôi một nên
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = a, AD = 2a. Cạnh bên SA vuông góc với đáy và SC tạo với (SAD) góc . Gọi G là trọng tâm tam giác SAB. Tính khoảng cách từ G đến mặt phẳng (SCD).
Câu 2:
Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông cạnh a. Gọi E là điểm đối xứng của D qua trung điểm SA, M là trung điểm của AE, N là trung điểm của BC. Chứng minh rẳng MN vuông góc với BD và tính khoảng cách giữa hai đường thẳng MN và AC.
Câu 3:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hình chiếu của S lên đáy ABCD trùng với trọng tâm tam giác ABD. Mặt bên (SAB) tạo với đáy góc . Tính theo a khoảng cách từ B đến mặt phẳng (SAD)
Câu 4:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = 2a. Hai mặt phẳng (SAB) và (SAC) cùng vuông góc với đáy (ABC). Gọi M là trung điểm của AB, mặt phẳng qua SM song song với BC cắt AC tại N. Biết góc tạo bởi (SBC) và (ABC) là . Tìm khoảng cách giữa hai đường thẳng AB và SN.
Câu 5:
Cho lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình thoi, AB = a√3, . Góc giữa đường thẳng AC' và mặt phẳng (ADD'A') là . Gọi M là trung điểm A'D', N là trung điểm BB'. Tính khoảng cách từ N đến mặt phẳng (C'MA)
Câu 6:
Cho hình chóp tứ giác đều S.ABCD. Gọi H là chân đường cao của hình chóp. Một mặt phẳng (P) thay đổi cắt các cạnh bên SA, SB, SC, SD lần lượt tại E, F, I, J. Gọi K = EI ∩ FJ. Đặt SE = a, SF = b, SI = c, SJ = d, SK = k, ∠ASH = α.
a) Tìm diện tích của tam giác SEI theo a, c, α
b) Chứng minh rằng
Suy ra
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận