Câu hỏi:

13/07/2024 1,237 Lưu

Cho đường tròn tâm O bán kính R và điểm A (khác O) ở trong đường tròn đó. Một đường thẳng d thay đổi, luôn đi qua A, cắt đường tròn đã cho tại hai điểm là B và C. Tìm quỹ tích trung điểm I của đoạn thẳng BC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Chứng minh thuận:

Đường tròn (O) cho trước, điểm A cố định nên OA có độ dài không đổi.

ΔOBC cân tại O (vì OB = OC bán kính)

IB = IC (gt) nên OI là đường trung tuyến vừa là đường cao

OI ⊥ BC

Góc OIA = 90°

Đường thẳng d thay đổi nên B, C thay đổi thì I thay đổi tạo với 2 đầu đoạn OA cố định góc góc OIA = 90°. Vậy I chuyển động trên đường tròn đường kính OA.

Chứng minh đảo: Lấy điểm I’ bất kỳ trên đường tròn đường kính AO. Đường thẳng AI’ cắt đường tròn (O) tại 2 điểm B’ và C’.

Ta chứng minh: I’B = I’C’.

Trong đường tròn đường kính AO ta có góc OI'A = 90° (góc nội tiếp chắn nửa đường tròn)

OI'⊥ B'C'

I'B' = I'C' (đường kính vuông góc với dây cung)

Vậy quỹ tích các điểm I là trung điểm của dây BC của đường tròn tâm O khi BC quay xung quanh điểm A cố định là đường tròn đường kính AO.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong ABC ta lấy điểm M. Nối MA, MB, MC.

Ta cần làm xuất hiện tổng MA + MB + MC sau đó tìm điều kiện để tổng đó nhỏ nhất.

Lấy MC làm cạnh dựng trên nửa mặt phẳng bờ BC chứa điểm A tam giác đều MCN. Suy ra: CM = MN.

Lấy AC làm cạnh dựng trên nửa mặt phẳng bờ AC không chứa điểm B tam giác đều APC. Khi đó, CA = CP

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Xét AMC và PNC:

CM = CN (vì ΔMCN đều)

CA = CP (vì ΔAPC đều)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra: AMC = PNC (c.g.c)

⇒ PN = AM

MA + MB + MC = NP + MB + MN

Ta có ABC cho trước nên điểm P cố định nên BM + MN + NP ngắn nhất khi 4 điểm B, M, N, P thẳng hàng.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Phân tích: Vì ABCD là hình vuông nên:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có, ba điểm A, M, N cố định nên bài toán quy về việc dựng đỉnh C. Đỉnh C là giao điểm của :

- Cung chứa góc 90° dựng trên đoạn thẳng MN

- Cung chứa góc 45° dựng trên đoạn thẳng AM

Cách dựng:

- Dựng cung chứa góc 90° trên đoạn MN

- Dựng cung chứa góc 45° trên đoạn AM

Hai cung cắt nhau tại C

- Nối CM ,CN

- kẻ AB ⊥ CM tại B , AD ⊥ CN tại D

Tứ giác ABCD là hình vuông cần dựng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP