Câu hỏi:

19/08/2025 3,299 Lưu

Cho hình thoi ABCD có hai đường chéo cắt nhau tại O. Trên tia đối của tia BA lấy điểm E sao cho BE = BA. Nối ED cắt AC ở I và BC ở F.

a) Chứng minh ID = 2IF.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có BE = BA (gt) mà BA // CD và BA = CD (gt)

⇒ BE // CD và BE = CD.

Do đó BECD là hình bình hành nên F là trung điểm của BC.

Xét ΔBDC có I là trọng tâm ⇒ ID = 2IF.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

b) Xét Δ BCD có: O là trung điểm của BD

F là trung điểm của BC

⇒ OF là đường trung bình của ΔBDC ⇒ OF // DC mà DC // AB nên OF // AE

⇒ FH // BE

Mà O là trung điểm của AC nên H là trung điểm của EC hay AH là trung tuyến của ΔAEC. Mà AH cắt EO tại G nên G là trong tâm của ΔAEC ⇒ A, G, H thẳng hàng.

Câu 2

A. Tứ giác ABCD là hình vuông.

B. Tứ giác ABCD là hình bình hành.

C. Tứ giác ABCD là hình thoi.

D. ABCD là tứ giác bất kỳ.

Lời giải

Chọn D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Hình thang có một góc vuông.

B. Hình thang có hai góc vuông.

C. Tứ giác có hai đường chéo bằng nhau.

D. Hình bình hành có một góc vuông.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP