Phần tự luận (7 điểm)
a) Tính tổng các góc trong của đa giác 5 cạnh.
b) Cho ngũ giác đều ABCDE. Gọi F là giao điểm hai đường chéo AC và BE. Chứng minh tứ giác CFED là hình thoi.
Quảng cáo
Trả lời:

a) Nối AC; AD
Ngũ giác ABCDE được chia thành 3 tam giác: ΔABC, ΔACD, ΔADE. Tổng các góc trong của mỗi tam giác bằng 180o.
Tổng các góc trong của ngũ giác ABCDE là 180o.3 = 540o
b) Vì ABCDE là ngũ giác đều nên
Mặt khác, ΔABC cân tại B nên:
Suy ra:
Lại có:
Suy ra ED // AC hay ED // CF.
Chứng minh tương tự ta có EF // CD
Mặt khác ED = DC (gt) nên tứ giác CEFD là hình thoi.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn C
Câu 2
A. Tăng lên 3 lần
B. Tăng lên 6 lần
C. Tăng lên 9 lần
D. Giảm đi 3 lần
Lời giải
Chọn A
Câu 3
A. 5cm
B. 6cm
C. 7cm
D. 8cm
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. 28
B. 14
C. 7
D. 56
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.