Câu hỏi:

03/07/2020 5,935

Cho tam giác ABC, hai đường cao BE và CF cắt nhau tại H. Gọi D là điểm đối xứng của H qua trung điểm M của BC

 

a) Chứng minh tứ giác BFEC nội tiếp được đường tròn

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tứ giác BFEC có:

∠(BFC) = ∠(BEC) = 900(gt)

Mà 2 góc này cùng nhìn cạnh BC

⇒ Tứ giác BFEC nội tiếp được đường tròn

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Xét ΔABF và ΔACE có:

∠(BEA) = ∠(CFA) = 900 (gt)

∠(BAC ) chung

⇒ ΔABF ∼ ΔACE (g.g)

Đề kiểm tra Toán 9 | Đề thi Toán 9

Lời giải

Đề kiểm tra Toán 9 | Đề thi Toán 9

c) Xét tứ giác BHCD có:

M là trung điểm của 2 đường chéo HD và BC

⇒ Tứ giác BHCD là hình bình hành

Đề kiểm tra Toán 9 | Đề thi Toán 9

Mà BE ⊥ AC ; FC ⊥ AB

⇒ CD ⊥ AC ; DB ⊥ AB

Xét tứ giác ABDC có:

∠(ABD) = ∠(ACD) = 900

∠(ABD ) + ∠(ACD) = 1800

⇒ Tứ giác ABDC nội tiếp được đường tròn