Câu hỏi:

12/07/2024 4,407

Cho tam giác ABC, gọi các điểm M, N lần lượt nằm trên các cạnh AB, AC sao cho : AB = 3 x AM, AC = 3 x AN. Gọi I là điểm chính giữa của cạnh BC.

a) Chứng tỏ rằng tứ giác BMNC là hình thang và BC = 3 x MN.

b) Chứng tỏ rằng các đoạn thẳng BN, CM, AI cùng cắt nhau tại một điểm.

Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Vì AB = 3 x AM, AC = 3 x AN, nên MB = 2/3 x AB, NC = 2/3 x AC.

Từ đó suy ra : dt (MBC) = 2/3 x dt (ABC) (chung chiều cao từ C

dt (NCB) = 2/3 x dt (ABC) (chung chiều cao từ B)

Vậy dt (MBC) = dt (NCB) mà tam giác MBC và tam giác NCB có chung đáy BC, nên chiều cao từ M bằng chiều cao từ N xuống đáy BC hay MN song song với BC. Do đó BMNC là hình thang.

Từ MB = 2/3 x AB, nên dt (MBN) = 2/3 x dt (ABN) (chung chiều cao từ N) hay dt (ABN) = 2/3 x dt (MBN).

Hơn nữa từ AC = 3 x AN, nên NC = 2 x AN, do đó dt (NBC) = 2 x dt (ABN) (chung chiều cao từ B) ; suy ra dt (NBC) = 3/2 x 2 x dt (MBN) = 3 x dt (MBN).

Mà tam giác NBC và tam giác MBN có chiều cao bằng nhau (cùng là chiều cao của hình thang BMNC). Vì vậy đáy BC = 3 x MN.

b) Gọi BN cắt CM tại O. Ta sẽ chứng tỏ AI cũng cắt BN tại O. Muốn vậy, nối AO kéo dài cắt BC tại K, ta sẽ chứng tỏ K là điểm chính giữa của BC (hay K trùng với I).

Theo phần a) ta đã có dt (NBC) = 2 x dt (ABN). Mà tam giác NBC và tam giác ABN có chung đáy BN, nên chiều cao từ C gấp 2 lần chiều cao từ A xuống đáy BN. Nhưng đó là chiều cao tương ứng của hai tam giác BCO và BAO có chung đáy BO, vì vậy dt (BCO) = 2 x dt (BAO)

Tương tự ta cũng có dt (BCO) = 2 x dt (CAO).

Do đó dt (BAO) = dt (CAO). Hai tam giác BAO và CAO có chung đáy AO, nên chiều cao từ B bằng chiều cao từ C xuống đáy AO. Đó cũng là chiều cao tương ứng của hai tam giác BOK và COK có chung đáy OK, vì vậy dt (BOK) = dt (COK). Mà hai tam giác BOK và tam giác COK lại chung chiều cao từ O, nên hai đáy BK = CK hay K là điểm chính giữa của cạnh BC. Vậy điểm K trùng với điểm I hay BN, CM, AI cùng cắt nhau tại điểm O.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một tờ giấy hình chữ nhật được gấp theo đường chéo như hình vẽ. Diện tích hình nhận được bằng 5/8 diện tích hình chữ nhật ban đầu. Biết diện tích phần tô màu là 18 cm2. Tính diện tích tờ giấy ban đầu.

Xem đáp án » 12/07/2024 16,143

Câu 2:

Cho một số tự nhiên, nếu viết thêm một chữ số vào bên phải số đó ta được số mới hơn số đã cho đúng 2004 đơn vị. Tìm số đã cho và chữ số viết thêm.

Xem đáp án » 12/07/2024 14,261

Câu 3:

Một ca nô xuôi dòng từ A đến B hết 5 giờ và ngược dòng từ B về A hết 6 giờ. Tính khoảng cách AB biết vận tốc dòng nước là 3 km/giờ.

Xem đáp án » 12/07/2024 9,165

Câu 4:

Nếu trong một tháng nào đó mà có 3 ngày thứ bảy đều là các ngày chẵn thì ngày 25 của tháng đó sẽ là ngày thứ mấy?

Xem đáp án » 12/07/2024 7,665

Câu 5:

Một ô tô dự định đi từ C đến D trong 3 giờ. Do thời tiết xấu nên vận tốc của ô tô giảm 14 km/giờ và vì vậy đến D muộn 1 giờ so với thời gian dự định. Tính quãng đường CD.

Xem đáp án » 12/07/2024 7,588

Câu 6:

Ba lớp 5A, 5B và 5C trồng cây nhân dịp đầu xuân. Trong đó số cây của lớp 5A và lớp 5B trồng được nhiều hơn số cây của 5B và 5C là 3 cây. Số cây của lớp 5B và 5C trồng được nhiều hơn số cây của 5A và 5C là 1 cây. Tính số cây trồng được của mỗi lớp. Biết rằng tổng số cây trồng được của ba lớp là 43 cây.

Xem đáp án » 12/07/2024 5,827

Câu 7:

Cha hiện nay 43 tuổi. Nếu tính sang năm thì tuổi cha vừa gấp 4 tuổi con hiện nay. Hỏi lúc con mấy tuổi thì tuổi cha gấp 5 lần tuổi con ? Có bao giờ tuổi cha gấp 4 lần tuổi con không ? Vì sao ?

Xem đáp án » 11/07/2024 5,777
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua