Câu hỏi:

12/07/2024 4,629

Cho tam giác ABC, gọi các điểm M, N lần lượt nằm trên các cạnh AB, AC sao cho : AB = 3 x AM, AC = 3 x AN. Gọi I là điểm chính giữa của cạnh BC.

a) Chứng tỏ rằng tứ giác BMNC là hình thang và BC = 3 x MN.

b) Chứng tỏ rằng các đoạn thẳng BN, CM, AI cùng cắt nhau tại một điểm.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Vì AB = 3 x AM, AC = 3 x AN, nên MB = 2/3 x AB, NC = 2/3 x AC.

Từ đó suy ra : dt (MBC) = 2/3 x dt (ABC) (chung chiều cao từ C

dt (NCB) = 2/3 x dt (ABC) (chung chiều cao từ B)

Vậy dt (MBC) = dt (NCB) mà tam giác MBC và tam giác NCB có chung đáy BC, nên chiều cao từ M bằng chiều cao từ N xuống đáy BC hay MN song song với BC. Do đó BMNC là hình thang.

Từ MB = 2/3 x AB, nên dt (MBN) = 2/3 x dt (ABN) (chung chiều cao từ N) hay dt (ABN) = 2/3 x dt (MBN).

Hơn nữa từ AC = 3 x AN, nên NC = 2 x AN, do đó dt (NBC) = 2 x dt (ABN) (chung chiều cao từ B) ; suy ra dt (NBC) = 3/2 x 2 x dt (MBN) = 3 x dt (MBN).

Mà tam giác NBC và tam giác MBN có chiều cao bằng nhau (cùng là chiều cao của hình thang BMNC). Vì vậy đáy BC = 3 x MN.

b) Gọi BN cắt CM tại O. Ta sẽ chứng tỏ AI cũng cắt BN tại O. Muốn vậy, nối AO kéo dài cắt BC tại K, ta sẽ chứng tỏ K là điểm chính giữa của BC (hay K trùng với I).

Theo phần a) ta đã có dt (NBC) = 2 x dt (ABN). Mà tam giác NBC và tam giác ABN có chung đáy BN, nên chiều cao từ C gấp 2 lần chiều cao từ A xuống đáy BN. Nhưng đó là chiều cao tương ứng của hai tam giác BCO và BAO có chung đáy BO, vì vậy dt (BCO) = 2 x dt (BAO)

Tương tự ta cũng có dt (BCO) = 2 x dt (CAO).

Do đó dt (BAO) = dt (CAO). Hai tam giác BAO và CAO có chung đáy AO, nên chiều cao từ B bằng chiều cao từ C xuống đáy AO. Đó cũng là chiều cao tương ứng của hai tam giác BOK và COK có chung đáy OK, vì vậy dt (BOK) = dt (COK). Mà hai tam giác BOK và tam giác COK lại chung chiều cao từ O, nên hai đáy BK = CK hay K là điểm chính giữa của cạnh BC. Vậy điểm K trùng với điểm I hay BN, CM, AI cùng cắt nhau tại điểm O.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Khi gấp tờ giấy hình chữ nhật theo đường chéo (đường nét đứt) thì phần hình tam giác được tô màu bị xếp chồng lên nhau. Do đó diện tích hình chữ nhật ban đầu lớn hơn diện tích hình nhận được chính là diện tích tam giác được tô màu. 

Diện tích hình chữ nhật ban đầu giảm đi bằng 1 - 5/8 = 3/8 diện tích hình chữ nhật ban đầu. 

Do vậy diện tích tam giác tô màu bằng 3/8 diện tích hình chữ nhật ban đầu, hay 3/8 diện tích hình chữ nhật ban đầu bằng 18 cm2. 

Vậy diện tích hình chữ nhật ban đầu là : 18 : 3/8 = 48 (cm2)

Lời giải

Cách 1 : Khi viết thêm một chữ số nào đó vào bên phải một số tự nhiên đã cho ta được số mới bằng 10 lần số tự nhiên đó cộng thêm chính chữ số viết thêm. Gọi chữ số viết thêm là a, ta có sơ đồ

9 lần số đã cho là : 2004 - a. 

Số đã cho là : (2004 - a) : 9. 

Vì số đã cho là số tự nhiên nên 2004 - a phải chia hết cho 9, số 2004 chia 9 dư 6 nên a chia cho 9 phải dư 6, mà a là chữ số nên a = 6. Số tự nhiên đã cho là (2004 - 6) : 9 = 222. 

Cách 2 : Gọi số tự nhiên đã cho là A chữ số viết thêm là x thì số mới là Ax¯

Ta có Ax¯ - A = 2004  

A x 10 + x - A = 2004 (phân tích số) 

A x 10 - A + x = 2004 

A x (10 - 1) + x = 2004 (một số nhân với một tổng) 

A x 9 + x = 2004 

Vì A x 9 chia hết cho 9 ; 2004 chia 9 dư 6 nên x chia cho 9 phải dư 6. Vì x là chữ số nên x = 6. Ta có : 

A x 9 + 6 = 2004 

A x 9 = 2004 - 6 

A x 9 = 1998 

A = 1998 : 9 

A = 222. 

Vậy số tự nhiên đã cho là 222 ; chữ số viết thêm là 6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay