Câu hỏi:

13/07/2024 487

Cho tam giác ABC, M là một điểm bất kỳ trên BC và M khác trung điểm BC. Hãy vẽ qua M một đường thẳng sao cho đường thẳng đó chia tam giác ABC thành hai phần có diện tích bằng nhau?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả sử BM<MC khi đó: S(AMB)<S(AMC)
Đặt I là trung điểm BC. Nối AM, AI. Qua I kẻ đường thẳng song song với AM và cắt AC tại N và AI giao với MN tại O.

Đường thẳng MN chính là đường thẳng cần phải vẽ.
Thật vây, tứ giác ANIM là hình thang nên S(AON)=S(MOI)
Mặt khác:
S(AIC)=1/2S(ABC)=S(AON)+S(CION)=S(MOI)+S(CION)=S(CMN)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Nếu thay một trong 5 chữ số kia bằng chữ số 0 sẽ thú vị hơn nhiều.

Số lần xuất hiện của mỗi chữ số ở mỗi hàng là

120 : 5 = 24 (lần)
Tổng các chữ số là 1+3+5+7+9 = 25 
Tổng các số lập được

 25 x 24000 + 25 x 2400 + 25 x 240 + 25 x 24

= 666600

Lời giải

Gọi số tự nhiên lớn nhất cần tìm là A.
Theo bài ra ta có:
- Vì A có các chữ khác 0 và có tổng các chữ số bằng 8 nên A không có chữ số lớn hơn hoặc bằng 8 vì 8+0=8 (*).
- Từ (*) ta thấy A chỉ có thể chứa những chữ số từ 1-> 7 và những chữ số đó khác nhau. Ta xét các trường hợp sau:
+ Nếu A có chữ số 1 thì tổng các chữ số chỉ có thể là 1+5+2; hoặc 1+4+3 suy ra A=521(a)
+ Nếu A có chữ số 2 thì tổng các chữ số chỉ có thể là 2+5+1=8 suy ra A= 521(b). 
+ Nếu A có chữ số 3 thì tổng các chữ số chỉ có thể là 3+4+1=8 suy ra A= 431(c)
+ Nếu A có chữ số 4 thì tổng các chữ số chỉ có thể là 4+3+1=8 suy ra A= 431(d)
+ Nếu A có chữ số 5 thì tổng các chữ số chỉ có thể là 5+2+1 suy ra A= 521(e)
+ Nếu A có chữ số 6 thì không có chữ số nào đáp ứng điều kiện đầu bài(f) 
+ Nếu A có chữ số 7 thì cũng không có chữ số nào đáp ứng điều kiện đầu bài(g)
Từ (a);(b);(c);(d);(e);(f);(g) ta thấy số A=521( số cần tìm)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP