Câu hỏi:

12/07/2024 3,107

Cho tam giác ABC. Đường thẳng qua A song song với BC cắt đường thẳng qua C song song với AB ở D. Gợi M là giao điểm của BD và AC.

a) Chứng minh ABC = CDA.

b) Chứng minh M là trung điểm của AC.

c) Đường thẳng d qua M cắt các đoạn thẳng AD,BC lần lượt ở I, K. Chứng minh M là trung điểm của IK.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC AB khác AC, tia Ax đi qua trung điểm M của BC. Kẻ BE và CF vuông góc với Ax (E,F thuộc Ax).

a) Chứng minh: BE//CP.

b) So sánh BE và FC; CE và BF.

c) Tìm điều kiện về tam giác ABC để có BE = CE.

Xem đáp án » 12/07/2024 17,168

Câu 2:

Cho tam giác ABC có AB < AC. Kẻ tia phân giác AD của BAC^ (D thuộc BC). Trên cạnh AC lấy điểrn E sao cho AE = AB, trên tia AB lấy điểm F sao cho AF = AC, Chứng minh:

a) BDF = EDC

b) BF = EC

c) ADFC.

Xem đáp án » 12/07/2024 13,486

Câu 3:

Cho góc xOy khác góc bẹt và có Ot là tia phân giác. Lấy điểm C thuộc Ot (CO). Qua C kẻ đường vuông góc với Ot, cắt Ox, Oy theo thứ tự ở A, B.

a) Chứng minh: OA = OB.

b) Lấy điểm D thuộc Ct. Chứng minh: DA = DB và OAD^=OBD^

Xem đáp án » 12/07/2024 9,903

Câu 4:

Cho tam giác ABC. Trên tia đối của tia AB lấy điểm M sao cho AM = AB. Qua M kẻ đường thẳng a song song với BC, đường thẳng a cắt tia CA tại N. Chứng mình:

a) ABC = AMN .

b) A là trung điểm của NC.

Xem đáp án » 12/07/2024 9,902

Câu 5:

Cho góc xOy^ khác góc bẹt, Oz là tia phân, giác. Trên các tia Ox, Oy lần lượt lấy các điểm A, B sao cho OA = OB. C là điểm trên tia Oz. Gọi D là giao điểm của AC và Oy, E là giao điểm của BC và Ox. Chứng minh:

a) AC = BC.        

b) BCD = ACE

Xem đáp án » 12/07/2024 7,391

Câu 6:

Có những tam giác nào bằng nhau trong hình bên? Vì sao?

Xem đáp án » 12/07/2024 4,702

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL