Câu hỏi:

01/12/2021 1,804

Đội thể thao của trường có 45 vận động viên. Huấn luyện viên muốn chia thành các nhóm để luyện tập sao cho mỗi nhóm có ít nhất 2 người và không quá 10 người. Biết rằng các nhóm có số người như nhau, em hãy giúp huấn luyện viên chia nhé.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi số người mỗi nhóm được chia là x (người)

Ta có mỗi nhóm có ít nhất 2 người và không quá 10 người nên xN*;2x10

Vì đội thể thao của trường có 45 vận động viên và huấn luyện viên chia thành các nhóm mà mỗi nhóm có số người như nhau nên 45 ⁝ x hay x ∈ Ư(45) 

Ta lại có Ư(45) = {1; 3; 5; 9; 15; 45}

Mà 2 ≤ x ≤ 10 do đó x ∈ {3; 5; 9}

Với số người mỗi nhóm được chia là 3 người thì số nhóm là: 45 : 3 = 15 (nhóm)

Với số người mỗi nhóm được chia là 5 người thì số nhóm là: 45 : 5 = 9 (nhóm)

Với số người mỗi nhóm được chia là 9 người thì số nhóm là: 45 : 9 = 5 (nhóm)

Vậy huấn luyện viên có thể chia thành 15 nhóm, 9 nhóm hoặc 5 nhóm

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Vì 7 ⁝ 7 nên (219.7) ⁝ 7 và 87 do đó (219.7 + 8)7.

b) Vì 12 ⁝ 3nên (8.12) ⁝ 3 và 9 ⁝ 3 do đó (8.12 + 9) ⁝ 3.

Vậy khẳng định b là đúng.

Câu 2

Nếu a chia hết cho b, ta nói …:

Lời giải

Đáp án C

Nếu a chia hết cho b, ta nói b là ước của a và a là bội của b. Do đó cả A và B đều đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Không làm phép tính hãy cho biết tổng nào sau đây chia hết cho 5?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Tìm x là bội của 50 và thỏa mãn 200 < x < 300.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho hai số tự nhiên a và b (b ≠ 0). Nếu có số tự nhiên k sao cho a = kb thì:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay