Câu hỏi:

13/12/2021 533

a) Tìm ƯCLN(4, 9).

b) Có thể rút gọn phân số 49 được nữa hay không?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có: 4 = 2 . 2 = 22 và 9 = 3 . 3 = 32 

Do đó hai số 4 và 9 không có thừa số nguyên tố chung nên ƯCLN(4, 9) = 1. 

b) Vì ƯCLN(4, 9) = 1 nên ta KHÔNG thể rút gọn phân số 49 được nữa (vì cả tử và mẫu đều không cùng chia hết được cho số tự nhiên nào khác 1).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử a là số đội chơi được chia. (a ∈ N*)

Vì a là lớn nhất (phải chia nhiều đội nhất) và số bạn nam cũng như số bạn nữ được chia đều vào các đội nên khi đó a là ước chung lớn nhất của 24 và 30. 

Ta có:

24 = 3 . 8 = 3 . 23 ; 30 = 3 . 10 = 3 . 2 . 5  

(Các thừa số chung là 2; 3 và đều có số mũ nhỏ nhất là 1)

Khi đó: ƯCLN(24, 30) = 2 . 3 = 6 hay a = 6. 

Vậy có thể chia các bạn nhiều nhất thành 6 đội.

Lời giải

a) + Ta có: 31 là số nguyên tố nên nó chỉ có hai ước là 1 và 31. 

22 và 34 không chia hết cho 31 

Do đó ta có: ƯCLN(31, 22) = 1 và ƯCLN(31, 34) = 1.

+ Ta còn phải tìm ƯCLN(22, 34), ta phân tích các số 22 và 34 ra thừa số nguyên tố ta được: 22 = 2 . 11; 34 = 2 . 17. 

Khi đó thừa số nguyên tố chung của 22 và 34 là 2 với số mũ nhỏ nhất là 1.

Vậy ƯCLN( 22, 34) = 2. 

b) Ta phân tích các số 105; 128; 135 ra thừa số nguyên tố, ta có: 

Tìm ước chung lớn nhất của từng cặp số trong ba số sau đây: a) 31, 22, 34; b) 105, 128, 135

Do đó: 105 = 3 . 5 . 7

128 = 2 . 2 . 2 . 2 . 2 . 2 . 2 = 27

135 = 3 . 3 . 3 . 5 = 33 . 5 

+ Hai số 105 và 128 không có thừa số nguyên tố chung nên ƯCLN(105, 128) = 1. 

+ Hai số 128 và 135 không có thừa số nguyên tố chung nên ƯCLN(128, 135) = 1.

+ Hai số 105 và 135 có các thừa số nguyên tố chung là 3 và 5. 

Số 3 có số mũ nhỏ nhất là 1; số 5 có số mũ nhỏ nhất là 1. 

Do đó: ƯCLN(105, 135) = 31 . 51 = 3 . 5 = 15

Vậy ƯCLN(105, 128) = 1; ƯCLN(128, 135) = 1 và ƯCLN(105, 135) = 15.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay