Câu hỏi:

13/07/2024 984

Chứng tỏ rằng:

a) Tổng của 2 020 số lẻ bất kì luôn chia hết cho 2;

b) 1111 + 2222 + 3333 + 4444 + 5555 không chia hết cho 2;

c) 2 + 22 + 23 + … + 259 + 260 + 561 chia hết cho 5.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Tổng của hai số lẻ bất kì là một số chẵn nên tổng của 2020 số lẻ bất kì là một số chẵn nên chia hết cho 2.

b) Ta có 11 là số lẻ nên 1111 là số lẻ;

33 là số lẻ nên 3333 là số lẻ;

55 là số lẻ nên 5555 là số lẻ;

Khi đó: 1111 + 3333 + 5555 là số lẻ.

Mặt khác 2222; 4444 là các số chẵn nên 2222 + 4444 là số chẵn.

Vậy 1111 + 2222 + 3333 + 4444 + 5555 là số lẻ nên không chia hết cho 2.

c) Xét 2 + 22 + 23 + … + 259 + 260 

= (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + … + (257 + 258 + 259 + 260)

= 2(1 + 2 + 22 + 23) + 25.(1 + 2 + 22 + 23) + … + 257.(1 + 2 + 22 + 23

= 2.15 + 25.15 + … + 257.15

= 15.(2 + 25 + … + 257)

Vì 155 nên 15.(2 + 25 + … + 257)5 mà 561 cũng chia hết cho 5.

Nên 2 + 22 + 23 + … + 259 + 260 + 561 chia hết cho 5.

Vậy 2 + 22 + 23 + … + 259 + 260 + 561 chia hết cho 5. 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Các số có hai chữ số chia 5 dư 4 là: 14; 19; 24; 29; 34; 39; 44; …; 94; 99.

Số các số có hai chữ số chia 5 dư 4 là: (99 – 14):5 + 1 = 18.

Vậy có 18 số có hai chữ số chia cho 5 dư 4.

b) Một số chia cho 2 sẽ có số dư là 0; 1.

Một số chia cho 5 sẽ có số dư là: 0; 1; 2; 3; 4.

Do đó, một số chia cho 2 và cho 5 có cùng số dư thì số đó phải chia hết cho cả 2 và 5 hoặc cùng chia cho 2 và cho 5 dư 1.

Trường hợp 1: Các số có ba chữ số cùng chia hết cho 2 và cho 5 là: 100; 110; 120; …; 990.

Số các số có ba chữ số cùng chia hết cho 2 và 5 là: (990 – 100):10 + 1 = 90 số.

Trường hợp 2: Các số có ba chữ số cùng chia cho 2 và cho 5 có số dư là 1 là: 101; 111; 121; …; 991.

Số các số có ba chữ số cùng chia cho 2 và cho 5 dư 1 là: (991 – 101):10 + 1 = 90 số.

Vậy có tất cả 90 + 90 = 180 số có ba chữ số chia cho 2 và cho 5 có cùng số dư.

c) Các số chia hết cho 2 từ 1 đến 555 là: 2; 4; 6; …; 554.

Số các số nằm trong khoảng từ 1 đến 555 chia hết cho 2 là:

(554 – 2):2 + 1 = 277 số.

Vậy có 277 số trong các số từ 1 đến 555 chia hết cho 2.

d) Các số từ 500 đến 1 000 chia hết cho 5 là: 500; 505; 510; …; 1000.

Số các số nằm từ 500 đến 1 000 chia hết cho 5 là:

(1 000 – 500):5 + 1 = 101 số.

Vậy có tất cả 101 số từ 500 đến 1 000 chia hết cho 5.

Lời giải

Các số chia hết cho 5 có chữ số tận cùng là 0 hoặc 5.

Mà số cần tìm không chia hết cho 2 nên chữ số tận cùng là 5.

Số cần tìm là số có ba chữ số giống nhau nên số đó là: 555.

Vậy số tự nhiên có ba chữ số cần tìm là: 555.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay