Câu hỏi:

08/03/2022 418 Lưu

Cho C = 1+3+32+33+...+311. Khi đó C chia hết cho số nào dưới đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ghép ba số hạng liên tiếp thành một nhóm , ta được

C = 1+3+32+33+...+311

= (1+3+32)+(33+34+35)...+(39+310+311)

= (1+3+32)+33(1+3+32)+...+39(1+3+32)

= (1+3+32)(1+33+36+39)

= 13.(1+33+36+39)⁝13 (do 13⁝13)

Vậy C⁝13.

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Vì a chia cho 12 được số dư là 9 nên a = 12k + 9 (kϵN)

Vì 12k⁝3; 9⁝3 ⇒ a = (12k + 9)⁝3

Và 12k⁝4; 9 không chia hết cho 4 nên a = 12k + 9 không chia hết cho 4.

Vậy a chia hết cho 3 nhưng không chia hết cho 4.

Đáp án cần chọn là: B

Lời giải

Do 12⋮2; 14⋮2; 16⋮2 nên để A⋮̸2 thì x⋮̸2

=>x∈{1; 3; 5; 7;…} là các số lẻ.

Đáp án cần chọn là: A

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP