Câu hỏi:

12/07/2024 2,181

Chỉ ra một nghiệm của hệ bất phương trình sau: 2x+y>0x3y<6xy4.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn cặp số (1; 1)

Ta có: 2 . 1 + 1 = 2 + 1 = 3 > 0 nên (1; 1) là nghiệm của bất phương trình 2x + y > 0.

Lại có: 1 – 3 . 1 = 1 – 3 = – 2 < 6 nên (1; 1) là nghiệm của bất phương trình x – 3y < 6.

Ta cũng có: 1 – 1 = 0 > – 4 nên (1; 1) là nghiệm của bất phương trình x – y ≥ 4.

Do đó (1; 1) là nghiệm chung của ba bất phương trình trong hệ đã cho.

Vậy (1; 1) là một nghiệm của hệ bất phương trình đã cho.

 Chú ý: Ta cũng có thể chỉ ra các nghiệm khác của bất phương trình, chẳng hạn (1; 2), (0; 1), …

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x, y lần lượt là số lượng mũ kiểu thứ nhất và kiểu thứ hai trong một ngày mà phân xưởng cần sản xuất để tiền lãi thu được cao nhất. (Điều kiện: x,y )

Trong một ngày thị trường tiêu thụ tối đa 200 chiếc mũ kiểu thứ nhất và 240 chiếc mũ kiểu thứ hai nên ta có: 0 ≤ x ≤ 200; 0 ≤ y ≤ 240.

Tiền lãi khi bán một chiếc mũ kiểu thứ nhất là 24 nghìn và một chiếc mũ kiểu thứ hai là 15 nghìn nên tổng số tiền lãi khi bán mũ là T = 24x + 15y.

Nếu chỉ sản xuất toàn kiểu mũ thứ hai thì trong một giờ phân xưởng làm được 60 chiếc nên thời gian để làm một chiếc mũ kiểu thứ hai là 160   (giờ).

Thời gian làm ra một chiếc kiểu mũ thứ nhất nhiều gấp hai lần thời gian làm ra một chiếc mũ kiểu thứ hai nên thời gian để làm một chiếc mũ kiểu thứ nhất là 2.160=130 (giờ).

Thời gian để làm x chiếc mũ kiểu thứ nhất là 130x  (giờ).

Thời gian để làm y chiếc mũ kiểu thứ hai là 160y  (giờ).

Tổng thời gian để làm hai loại mũ trong một ngày là 130x+160y  (giờ).

Vì một ngày phân xưởng làm việc 8 tiếng nên 130x+160y82x+y480 .

Khi đó bài toán đã cho đưa về: Tìm x, y là nghiệm của hệ bất phương trình 2x+y4800x2000y240    I sao cho T = 24x + 15y có giá trị lớn nhất.

Trước hết, ta xác định miền nghiệm của hệ bất phương trình (I).

Miền nghiệm của hệ bất phương trình (I) là miền ngũ giác ACDEO với A(0; 240), C(120; 240), D(200; 80), E(200; 0), O(0; 0) (hình dưới).

(A là giao điểm của trục tung và đường thẳng y = 240; C là giao điểm của đường thẳng y = 240 và 2x + y = 480, D là giao điểm của đường thẳng 2x + y = 480 và x = 200, E là giao điểm của trục hoành và đường thẳng x = 200).

Một phân xưởng sản xuất hai kiểu mũ. Thời gian để làm ra một chiếc mũ kiểu thứ nhất nhiều gấp hai (ảnh 1)

Người ta chứng minh được: Biểu thức T = 24x + 15y có giá trị lớn nhất tại một trong các đỉnh của ngũ giác ACDEO.

Tính giá trị của biểu thức T = 24x + 15y tại các cặp số (x; y) là tọa độ các đỉnh của ngũ giác ACDEO:

+ Tại đỉnh A: T = 24 . 0 + 15 . 240 = 3600

+ Tại đỉnh C: T = 24 . 120 + 15 . 240 = 6480

+ Tại đỉnh D: T = 24 . 200 + 15 . 80 = 6000

+ Tại đỉnh E: T = 24 . 200 + 15 . 0 = 4800

+ Tại đỉnh O: T = 0

Có 0 < 3600 < 4800 < 6000 < 6480

So sánh giá trị của biểu thức T tại các đỉnh, ta thấy T đạt giá trị lớn nhất bằng 6480 khi x 120 và y = 240 ứng với tọa độ đỉnh C.

Vậy để tiền lãi thu được là cao nhất, trong một ngày xưởng cần sản xuất 120 chiếc mũ kiểu thứ nhất và 240 chiếc mũ kiểu thứ hai. Khi đó tiền lãi là 6480 nghìn đồng hay 6 480 000 đồng.

Lời giải

a) 3x+2y6   1x+4y>4         2    

+ Xét cặp số (0; 2), thay x = 0, y = 2 vào từng bất phương trình của hệ đã cho, ta có:

(1):  3 . 0 + 2 . 2 ≥ – 6 là mệnh đề đúng;

(2): 0 + 4 . 2 > 4 là mệnh đề đúng.

Vậy (0; 2) là nghiệm chung của (1) và (2) nên (0; 2) là nghiệm của hệ bất phương trình.

+ Xét cặp số (1; 0), thay x = 1, y = 0 vào từng bất phương trình của hệ đã cho ta có:

(1): 3 . 1 + 2 . 0 ≥ – 6 là mệnh đề đúng;

(2): 1 + 4 . 0 > 4 là mệnh đề sai.

Vậy (1; 0) không là nghiệm của (2) nên (1; 0) không là nghiệm của hệ bất phương trình.

b) 4x+y3                 33x+5y12        4

+ Xét cặp số (– 1; – 3), thay x = – 1, y = – 3 vào từng bất phương trình của hệ, ta có:

(3): 4 . (– 1) + (– 3) ≤ – 3  (do 4 . (– 1) + (– 3) = – 7 < – 3) là mệnh đề đúng;

(4): (– 3) . (– 1) + 5 . (– 3) ≥ – 12 (do (– 3) . (– 1) + 5 . (– 3) = – 12) là mệnh đề đúng.

Vậy (– 1; – 3) là nghiệm chung của (3) và (4) nên (– 1; – 3) là nghiệm của hệ bất phương trình.

+ Xét cặp số (0; – 3), thay x = 0, y = – 3 vào từng bất phương trình của hệ đã cho ta có:

(3): 4 . 0 + (– 3) ≤ – 3 là mệnh đề đúng;

(4): (– 3) . 0 + 5 . (– 3) ≥ – 12 là mệnh đề sai.

Vậy (0; – 3) không là nghiệm của (2) nên không là nghiệm của hệ bất phương trình.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay