Câu hỏi:
19/05/2022 2,942
Một con lắc lò xo dao động điều hòa theo phương thẳng đứng dọc theo trục tọa độ Ox, chiều dương hướng xuống, gốc O tại vị trí cân bằng của vật nhỏ. Chọn mốc thế năng trọng trường ở vị trí cân bằng của vật nhỏ. Hình vẽ bên là các đồ thị biểu diễn sự phụ thuộc của thế năng trọng trường và thế năng đàn hồi vào li độ x của dao động. Trong đó hiệu \({x_1} - {x_2} = 3,66cm\). Biên độ dao động A của con lắc lò xo có giá trị bằng

Quảng cáo
Trả lời:
Phương pháp:
+ Đọc đồ thị
+ Sử dụng biểu thức tính độ dãn của lò xo tại \({\rm{VTCB}}:\Delta l = \frac{{mg}}{k}\)
+ Sử dụng biểu thức tính thế năng đàn hồi: \({{\rm{W}}_{dh}} = \frac{1}{2}k\Delta {l^2}\) với\({\rm{ }}\Delta l\)là độ biến dạng của lò xo
+ Sử dụng biểu thức tính thế năng trọng trường:
Cách giải:
Từ đồ thị, ta thấy thế năng đàn hồi cực tiểu = 0 tại x2 \( \Rightarrow \) đây chính là độ dãn của lò xo tại VTCB
Lại có:
+ Thế năng đàn hồi: \({{\rm{W}}_{{\rm{d}}h}} = \frac{1}{2}k{\left( {x - {x_2}} \right)^2}\)
+ Thế năng trọng trường:
Từ đồ thị:
+ Xét tại
Theo đề bài ta có: \({x_1} - {x_2} = 3,66\;{\rm{cm}} \Rightarrow \) thay vào (*) ta suy ra:
+ Xét tại
Thay số vào ta suy ra:\(\frac{8}{{ - 3}} = \frac{{{{(A + 4,9997)}^2}}}{{2 \cdot A( - 4,9997)}} \Rightarrow \left[ {\begin{array}{*{20}{l}}{A = 14,9991\;{\rm{cm}}}\\{A = 1,667\;{\rm{cm}}}\end{array}} \right.\)
Chọn B.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- Sổ tay Vật lí 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Vật lí (có đáp án chi tiết) ( 38.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp:
Sử dụng biểu thức xác định vị trí vân tối: \({x_t} = \left( {k + \frac{1}{2}} \right)i\)
Cách giải:
Vị trí vân tối: \({x_t} = \left( {k + \frac{1}{2}} \right)i\)
Vân tối thứ hai ứng với k =1 ⇒Khoảng cách từ vân sáng trung tâm đến vân tối thứ hai: \({x_{t2}} = \left( {1 + \frac{1}{2}} \right)i = \frac{3}{2}i\)
Chọn D.
Lời giải
Phương pháp:
Trong quá trình truyền sóng, vecto cường độ điện trường \(\overrightarrow E \) và vecto cảm ứng từ \(\overrightarrow B \) biến thiên tuần hoàn theo không gian và thời gian, và luôn đồng pha.
Cách giải:
Do \(\overrightarrow E \) và \(\overrightarrow B \) biến thiên cùng pha với nhau nên: \(\frac{E}{{{E_0}}} = \frac{B}{{{B_0}}}{\rm{ hay }}{\left( {\frac{E}{{{E_0}}}} \right)^2} = {\left( {\frac{B}{{{B_0}}}} \right)^2}\)
Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.