Câu hỏi:
12/07/2024 4,039Trong tình huống mở đầu, gọi x và y lần lượt là số máy điều hòa hai chiều và một chiều mà cửa hàng cần nhập. Tính số tiền vốn cửa hàng phải bỏ ra để nhập hai loại máy điều hòa theo x và y.
a) Do nhu cầu của thị trường không quá 100 máy nên x và y cần thỏa mãn điều kiện gì?
b) Vì số vốn mà chủ cửa hàng có thể đầu tư không vượt quá 1,2 tỉ đồng nên x và y phải thỏa mãn điều kiện gì?
c) Tính số tiền lãi mà chủ cửa hàng dự kiến thu được theo x và y.
Câu hỏi trong đề: Bài tập Hệ bất phương trình bậc nhất hai ẩn có đáp án !!
Quảng cáo
Trả lời:
Gọi số máy điều hòa hai chiều cần nhập là x; số máy điều hòa một chiều cần nhập là y (). Khi đó, số tiền để mua x điều hòa hai chiều là 20x và số tiền để mua y điều hòa một chiều là 10y .
Số tiền vốn cửa hàng phải bỏ ra là 20x + 10y (triệu đồng)
a) Do nhu cầu không quá 100 máy nên x + y .
b) Vì số vốn mà cửa hàng có thể đầu tư không vượt quá 1,2 tỉ đồng nên x và y phải thỏa mãn bất phương trình 20x + 10y 1 200 (triệu đồng).
c) Vì mỗi điều hòa hai chiều dự kiến lãi 3,5 triệu đồng/ máy và mỗi điều hòa một chiều dự kiến lãi 2 triệu đồng/máy nên số tiền lãi mà chủ cửa hàng dự kiến thu được theo x và y là: 3,5x + 2y (triệu đồng).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a)
+) Xác định miền nghiệm D1 của bất phương trình y – x < – 1.
- Vẽ đường thẳng d: y – x = – 1.
- Vì 0 – 0 = 0 > – 1 nên tọa độ điểm (0; 0) không thỏa mãn bất phương trình y – x < – 1
Do đó miền nghiệm D1 của bất phương trình y – x < – 1 là nửa mặt phẳng bờ d không chứa điểm O(0; 0) và không kể đường thẳng d.
+) Miền nghiệm D2 của bất phương trình x > 0 là nửa mặt phẳng bờ Oy chứa điểm (1; 0) và không kể đường thẳng Oy.
+) Miền nghiệm D3 của bất phương trình y < 0 là nửa mặt phẳng bờ Ox chứ điểm (0; – 1) và không kể đường thẳng Ox.
Vậy miền không bị gạch là miền nghiệm của hệ bất phương trình đã cho.
b)
Miền nghiệm D1 của bất phương trình x 0 là nửa mặt phẳng bờ Oy chứa điểm (1; 0) và kể cả đường thẳng Oy.
Miền nghiệm D2 của bất phương trình y 0 là nửa mặt phẳng bờ Ox chứa điểm (0; 1) và kể cả đường thẳng Ox.
+) Xác định miền nghiệm D3 của bất phương trình 2x + y ≤ 4.
- Vẽ đường thẳng d: 2x + y = 4
- Vì 2.0 + 0 = 0 < 4 nên tọa độ điểm (0; 0) thỏa mãn bất phương trình 2x + y 4
Do đó miền nghiệm D3 của bất phương trình 2x + y 4 là nửa mặt phẳng bờ d chứa điểm O(0; 0) và kể cả đường thẳng d.
Vậy miền nghiệm của hệ bất phương trình đã cho là miền tam giác OAB (miền không bị gạch).
c)
Miền nghiệm D1 của bất phương trình x 0 là nửa mặt phẳng bờ Oy chứa điểm (1; 0) và kể cả đường thẳng Oy.
+) Xác định miền nghiệm D2 của bất phương trình x + y > 5.
- Vẽ đường thẳng d: x + y = 5
- Vì 0 + 0 = 0 < 5 nên tọa độ điểm (0; 0) không thỏa mãn bất phương trình x + y > 5
Do đó miền nghiệm D2 của bất phương trình x + y > 5 là nửa mặt phẳng bờ d không chứa điểm O(0; 0) và không kể đường thẳng d.
+) Xác định miền nghiệm D3 của bất phương trình x – y < 0.
- Vẽ đường thẳng d’: x – y = 0
- Vì 1 - 0 = 1 > 0 nên tọa độ điểm (1; 0) không thỏa mãn bất phương trình x – y < 0
Do đó miền nghiệm D3 của bất phương trình x – y < 0 là nửa mặt phẳng bờ d’ không chứa điểm (1; 0) và không kể đường thẳng d’.
Vậy miền nghiệm của hệ là miền không bị gạch.
Lời giải
a) Số máy tính loại A cửa hàng cần nhập trong một tháng là x (máy), số máy tính loại B cửa hàng cần nhập trong một tháng là y (máy) .
Do tổng nhu cầu hàng tháng sẽ không vượt quá 250 máy: x + y ≤ 250
Tổng số vốn cửa hàng cần nhập hai loại A và B: 10x + 20y (triệu đồng)
Vì mỗi chiếc máy tính loại A có giá 10 triệu và mỗi máy tính loại B có giá 20 triệu nên tổng số vốn cửa hàng cần nhập hai loại A và B: 10x + 20y (triệu đồng)
Vì số vốn ban đầu không vượt quá 4 tỉ đồng nên ta có: 10x + 20y ≤ 4 000 hay x + 2y ≤ 400.
Ta có hệ bất phương trình:
Ta xác định miền nghiệm của hệ bất phương trình trên:
+) Miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy chứa điểm (1;0).
+) Miền nghiệm D2 của bất phương trình y ≥ 0 là nửa mặt phẳng bờ Ox chứa điểm (0;1).
+) Xác định miền nghiệm D3 của bất phương trình x + y ≤ 250.
- Vẽ đường thẳng d: x + y = 250.
- Vì 0 + 0 = 0 < 250 nên tọa độ điểm O(0;0) thỏa mãn bất phương trình x + y ≤ 250
Do đó miền nghiệm D3 của bất phương trình x + y ≤ 250 là nửa mặt phẳng bờ d chứa gốc tọa độ.
+) Xác định miền nghiệm D4 của bất phương trình x + 2y ≤ 400.
- Vẽ đường thẳng d’: x + 2y = 400.
- Vì 0 + 2.0 = 0 < 400 nên tọa độ điểm O(0;0) thỏa mãn bất phương trình x + 2y < 400
Do đó miền nghiệm D4 của bất phương trình x + 2y < 400 là nửa mặt phẳng bờ d’ chứa gốc tọa độ.
Miền nghiệm của hệ bất phương trình trên là tứ giác OABC với O(0;0), A(0; 200), C(100;150), B(250;0)
b) Lợi nhuận mà cửa hàng thu được trong tháng đó khi bán x máy tính loại A và y máy tính loại B là: F(x;y) = 2,5x + 4y (triệu đồng).
Vậy F(x;y) = 2,5x + 4y.
c) Bài toán chuyển về tìm giá trị lớn nhất của F(x;y) với (x;y) thuộc miền nghiệm của hệ bất phương trình .
Người ta đã chứng minh được, giá trị F(x; y) lớn nhất tại (x; y) là tọa độ của một trong bốn đỉnh O; A; B; C.
Tại O(0; 0), ta có: F(0; 0) = 2,5 . 0 + 4 . 0 = 0;
Tại A(0; 200), ta có: F(0; 200) = 2,5 . 0 + 4 . 200 = 800;
Tại B(100; 150), ta có: F(100; 150) = 2,5 . 100 + 4 . 150 = 850;
Tại B(250; 0), ta có: F(250; 0) = 2,5 . 250 + 4 . 0 = 625.
Do đó F(x;y) lớn nhất bằng 850 tại x = 100 và y = 150.
Vậy cửa hàng cần nhập 100 máy loại A, 150 máy loại B để cửa hàng thu được lợi nhuận lớn nhất là 850 triệu đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Tìm hệ số, số hạng trong khai triển nhị thức Newton (có lời giải)
50 câu trắc nghiệm Thống kê cơ bản (phần 1)