Cho hình vẽ
Biết một cặp góc đồng vị \[\widehat {{A_4}} = \widehat {{B_4}} = 60^\circ \]. Tính số đo của cặp góc đồng vị \[\widehat {{A_3}}\] và \[\widehat {{B_3}}\].
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có:
\[\widehat {{A_4}} + \widehat {{B_3}} = 180^\circ \] (hai góc kề bù)
Do đó \[\widehat {{B_3}} = 180^\circ - 60^\circ = 120^\circ \]
Suy ra \[\widehat {{A_3}}\; = \widehat {{B_3}} = 120^\circ \]
Vậy chọn đáp án A.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Ta có Ot là tia phân giác góc xOy \[ \Rightarrow \widehat {xOt} = \widehat {yOt} = \frac{{\widehat {xOy}}}{2} = \frac{{66^\circ }}{2} = 33^\circ \].
Vậy chọn đáp án A.
Lời giải
Đáp án đúng là: A
Ot là tia nằm trong góc mOn và tạo với hai cạnh của góc đó hai góc \[\widehat {mOt} = \widehat {tOn}\] nên Ot là tia phân giác của góc mOn.
Do đó chọn đáp án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.