Viết giả thiết, kết luận cho định lí sau:
“Nếu một đường thẳng cắt hai đường thẳng phân biệt và trong số các góc tạo thành có một cặp góc so le trong bằng nhau thì hai đường thẳng đó song song với nhau.”

A.
|
Giả thiết |
c cắt a tại A, c cắt b tại B \[\widehat {{A_4}}\] và \[\widehat {{B_2}}\] là hai góc so le trong \[\widehat {{A_4}} = \widehat {{B_2}}\] |
|
Kết luận |
a // b |
B.
|
Giả thiết |
c cắt a tại A, c cắt b tại B \[\widehat {{A_3}}\] và \[\widehat {{B_1}}\] là hai góc đối đỉnh \[\widehat {{A_3}} = \widehat {{B_1}}\] |
|
Kết luận |
a // b |
C.
|
Giả thiết |
c cắt a tại A, c cắt b tại B \[\widehat {{A_3}}\] và \[\widehat {{B_1}}\] là hai góc so le trong \[\widehat {{A_3}} \ne \widehat {{B_1}}\] |
|
Kết luận |
a // b |
D.
|
Giả thiết |
c cắt a tại A, c cắt b tại B \[\widehat {{A_3}}\] và \[\widehat {{B_1}}\] là hai góc đồng vị \[\widehat {{A_3}} \ne \widehat {{B_1}}\] |
|
Kết luận |
a // b |
Quảng cáo
Trả lời:
Đáp án đúng là: A
|
Giả thiết |
c cắt a tại A, c cắt b tại B \[\widehat {{A_4}}\] và \[\widehat {{B_2}}\] là hai góc so le trong \[\widehat {{A_4}} = \widehat {{B_2}}\] |
|
Kết luận |
a // b |
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Anh, KHTN lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Văn, Sử, Địa, GDCD lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 7 (chương trình mới) ( 120.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 8 (chương trình mới) ( 120.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. 50°;
B. 40°;
C. 60°;
D. 30°.
Lời giải
Đáp án đúng là: D
Vì EF // DC nên ta có: \[\widehat {ECD} = \widehat {F{\rm{E}}C}\] (hai góc so le trong)
Ta có \[\widehat {BCD} = 90^\circ \] hay \[\widehat {FCE} + \widehat {ECD} = 90^\circ \] suy ra \[\widehat {ECD} = 90^\circ - 60^\circ = 30^\circ \].
Do đó \[\widehat {FEC} = \widehat {ECD} = 30^\circ \].
Vậy chọn đáp án D.
Câu 2
A. x = 60° và y = 35°;
B. x = 120° và y = 145°;
C. x = 35° và y = 60°;
D. x = 145° và y = 120°.
Lời giải
Đáp án đúng là: D
Vì a // b nên \[\widehat {BAD} = \widehat {ADb'} = 35^\circ \] (hai góc so le trong)
Mà \[\widehat {ADb'}\] và \[\widehat {ADC}\] là hai góc kề bù nên suy ra \[\widehat {ADC} + \widehat {ADb'} = 180^\circ \Rightarrow x + 35^\circ = 180^\circ \]
Suy ra, x = 180o ‒ 35° = 145°
Vì a // b nên \[\widehat {ABC} = \widehat {BCb} = 60^\circ \] (hai góc trong so le trong)
Mà \[\widehat {BCb}\] và \[\widehat {bCd'}\] là hai góc kề bù nên suy ra \[\widehat {BCb} + \widehat {bCd'} = 180^\circ \Rightarrow 60^\circ + y = 180^\circ \]
Suy ra \[y = 180^\circ - 60^\circ = 120^\circ \]
Vậy x = 145° và y = 120°.
Câu 3
A. Ba cặp;
B. Bốn cặp;
C. Một cặp;
D. Vô số cặp.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[\widehat {ABC}\] và \[\widehat {ADC}\] là hai góc kề bù;
B. \[\widehat {AOB}\] và \[\widehat {BOC}\] là hai góc so le trong;
C. \[\widehat {BAD}\] và \[\widehat {ADC}\] là hai góc đồng vị;
D. \[\widehat {AOB}\] và \[\widehat {DOC}\] là hai góc đối đỉnh.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. 60°;
B. 40°;
C. 30°;
D. 125°.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. 60°;
B. 34°;
C. 40°;
D. 84°.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




