Câu hỏi:

26/06/2022 650

Trở lại Ví dụ 1, hãy cho biết khi nào biến cố C: “Học sinh được gọi là một bạn nam” xảy ra?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Biến cố C: “Học sinh được chọn là một bạn nam”.

Trong các bạn được cho ở Ví dụ 1, có bốn bạn nam là Sơn, Tùng, Hoàng, Tiến.

Vậy biến cố C xảy ra khi và chỉ khi bạn được chọn là Sơn hoặc Tùng hoặc Hoàng hoặc Tiến.

Biến cố C xảy ra khi bạn học sinh được gọi là nam, tức là biến cố A (bạn được gọi là bạn nữ) không xảy ra.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Các con xúc xắc là cân đối nên các kết quả xảy ra có thể đồng khả năng.

Do gieo một con xúc xắc thì số chấm xuất hiện có thể là 1, 2, 3, 4, 5, 6 nên khi gieo 2 con xúc xắc thì số khả năng xảy ra là n(Ω) = 6 . 6 = 36.

Các kết quả của không gian mẫu được cho trong bảng:

 

1

2

3

4

5

6

1

(1; 1)

(1; 2)

(1; 3)

(1; 4)

(1; 5)

(1; 6)

2

(2; 1)

(2; 2)

(2; 3)

(2; 4)

(2; 5)

(2; 6)

3

(3; 1)

(3; 2)

(3; 3)

(3; 4)

(3; 5)

(3; 6)

4

(4; 1)

(4; 2)

(4; 3)

(4; 4)

(4; 5)

(4; 6)

5

(5; 1)

(5; 2)

(5; 3)

(5; 4)

(5; 5)

(5; 6)

6

(6; 1)

(6; 2)

(6; 3)

(6; 4)

(6; 5)

(6; 6)

 a) Gọi biến cố A: “Số chấm xuất hiện trên mỗi con xúc xắc bé hơn 3”.

Các kết quả thuận lợi của A là: (1; 1), (1; 2), (2; 1), (2; 2).

Do đó, n(A) = 4.

Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{4}{{36}} = \frac{1}{9}\).

b) Gọi biến cố B: “Số chấm xuất hiện trên con xúc xắc mà An gieo lớn hơn hoặc bằng 5”.

Các kết quả thuận lợi của B là: (5; 1), (5; 2), (5; 3), (5; 4), (5; 5), (5; 6), (6; 1), (6; 2), (6; 3), (6; 4), (6; 5), (6; 6).

Do đó, n(B) = 12. 

Vậy \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{12}}{{36}} = \frac{1}{3}\).

c) Gọi biến cố C: “Tích hai số chấm xuất hiện trên hai con xúc xắc bé hơn 6”.

Các kết quả thuận lợi của C là: (1; 1), (1; 2), (1; 3), (1; 4), (1; 5), (2; 1), (2; 2), (3; 1), (4; 1), (5; 1).

Do đó, n(C) = 10.

Vậy \(P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega \right)}} = \frac{{10}}{{36}} = \frac{5}{{18}}\).

d) Gọi biến cố D: “Tổng hai số chấm xuất hiện trên hai con xúc xắc là một số nguyên tố”.

Các kết quả thuận lợi của D là: (1; 1), (1; 2), (2; 1), (1; 4), (4; 1), (1; 6), (6; 1), (2; 3); (2; 5), (3; 2), (5; 2), (3; 4), (4; 3), (5; 6), (6; 5).

Do đó, n(D) = 15.

Vậy \(P\left( D \right) = \frac{{n\left( D \right)}}{{n\left( \Omega \right)}} = \frac{{15}}{{36}} = \frac{5}{{12}}.\)

Lời giải

Hướng dẫn giải

a) Gieo một đồng xu, các kết quả có thể là xuất hiện mặt sấp và mặt ngửa.

Gieo một con xúc xắc, các kết quả có thể là xuất hiện mặt 1 chấm, 2 chấm, 3 chấm, 4 chấm, 5 chấm, 6 chấm.

Kí hiệu S là mặt sấp, N là mặt ngửa. Không gian mẫu được cho theo bảng:

 

1

2

3

4

5

6

S

S1

S2

S3

S4

S5

S6

N

N1

N2

N3

N4

N5

N6

Do đó ta có: Ω = {S1; S2; S3; S4; S5; S6; N1; N2; N3; N4; N5; N6}.

b) Biến cố C: “Đồng xu xuất hiện mặt sấp”.

Biến cố \(\overline C \): “Đồng xu xuất hiện mặt ngửa”. (không xuất hiện mặt sấp, là xuất hiện mặt ngửa).

Do đó, C = {S1; S2; S3; S4; S5; S6};

\(\overline C \) = {N1; N2; N3; N4; N5; N6}.

Biến cố D: “Đồng xu xuất hiện mặt ngửa hoặc số chấm xuất hiện trên con xúc xắc là 5”.

Biến cố \(\overline D \): “Đồng xu xuất hiện mặt sấp và số chấm xuất hiện trên con xúc xắc khác 5”.

Do đó, D = {N1; N2; N3; N4; N5; N6; S5};

\(\overline D \) = {S1; S2; S3; S4; S6}.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay