Câu hỏi:

07/07/2022 177

Cho hai điểm M(1; 0) và N(–2; –1) và hệ bất phương trình \[\left\{ \begin{array}{l}2x \le 1\\2x + 5y < 3\end{array} \right.\]. Trong hai điểm M và N, điểm nào thuộc miền nghiệm của hệ đã cho?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

+ Ta có : 2.1 = 2 > 1 và 2. 1 + 5. 0 = 2 < 3.

Do đó cặp số (1; 0) không là nghiệm của bất phương trình 2x ≤ 1.

Suy ra cặp số (1; 0) không là nghiệm của hệ bất phương trình\[\left\{ \begin{array}{l}2x \le 1\\2x + 5y < 3\end{array} \right.\].

Vậy nên, điểm M(1; 0) không thuộc miền nghiệm của hệ bất phương trình\[\left\{ \begin{array}{l}2x \le 1\\2x + 5y < 3\end{array} \right.\]

+ Ta có : 2. (–2) = –4 < 1 và 2. (–2) + 5. (–1) = –9 < 3.

Do đó cặp số (–2; –1) là nghiệm của của hai bất phương trình 2x ≤ 1 và 2x + 5y < 3.

Suy ra cặp số (–2; –1) là nghiệm của hệ bất phương trình\[\left\{ \begin{array}{l}2x \le 1\\2x + 5y < 3\end{array} \right.\].

Vậy nên, điểm N(–2; –1) thuộc miền nghiệm của hệ bất phương trình\[\left\{ \begin{array}{l}2x \le 1\\2x + 5y < 3\end{array} \right.\].

Do đó điểm M không thuộc miền nghiệm, điểm N thuộc miền nghiệm của hệ đã cho. Vậy ta chọn đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Các hệ bất phương trình \(\left\{ \begin{array}{l}{x^2} + 3y \ge 2\\2x + y \le - 1\end{array} \right.\); \(\left\{ \begin{array}{l}4x + 3y - 1 \ge 0\\x + {y^3} > 0\end{array} \right.\); \(\left\{ \begin{array}{l} - {x^2} + 3y \ge 5\\x + {y^3} \le 1\end{array} \right.\) đều chứa các bất phương trình bậc hai hoặc bậc ba như : x2 + 3y ≥ 2 ; x + y3 > 0 ; – x2 + 3y ≥ 5.

Do đó, các hệ bất phương trình \(\left\{ \begin{array}{l}{x^2} + 3y \ge 2\\2x + y \le - 1\end{array} \right.\); \(\left\{ \begin{array}{l}4x + 3y - 1 \ge 0\\x + {y^3} > 0\end{array} \right.\); \(\left\{ \begin{array}{l} - {x^2} + 3y \ge 5\\x + {y^3} \le 1\end{array} \right.\) không phải là hệ bất phương trình bậc nhất hai ẩn.

Hệ \(\left\{ \begin{array}{l}x + 3y \ge 0\\2x \le 0\end{array} \right.\) có hai bất phương trình x + 3y ≥ 0 và 2x ≤ 0 đều là các bất phương trình bậc nhất hai ẩn.

Vậy ta chọn đáp án A.

Lời giải

Đáp án đúng là: D

Số tiền mệnh giá 10 nghìn đồng là: 10x (nghìn đồng)

Số tiền mệnh giá 20 nghìn đồng là: 20y (nghìn đồng)

Tổng số tiền bạn Lan đã ủng hộ là: 10x + 20y (nghìn đồng).

Vì tổng số tiền Lan ủng hộ không vượt quá số tiền Lan để dành được là 300 nghìn đồng nên ta có bất phương trình: 10x + 20y ≤ 300.

Vậy ta chọn đáp án D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP