Câu hỏi:
08/07/2022 723Một quân vua được đặt trên một ô giữa bàn cờ vua. Mỗi bước di chuyển, quân vua được chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng. Bạn An di chuyển quân vua ngẫu nhiên 3 bước. Tính xác suất sau 3 bước quân vua trở về ô xuất phát.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Tại mọi ô đang đứng, ông vua có 8 khả năng lựa chọn để bước sang ô bên cạnh.
Do đó không gian mẫu n(Ω) = 83 = 512.
Gọi A là biến cố “sau 3 bước quân vua trở về ô xuất phát”. Sau ba bước quân vua muốn quay lại ô ban đầu khi ông vua đi theo đường khép kín tam giác. Chia hai trường hợp:
Trường hợp 1, từ ô ban đầu đi đến ô đen, đến đây có 4 cách để đi bước hai rồi về lại vị trí ban đầu. Vậy trường hợp 1 có 4.4 = 16 cách
Trường hợp 2, từ ô ban đầu đi đến ô trắng, đến đây có 2 cách để đi bước hai rồi về lại vị trí ban đầu. Vậy trường hợp 2 có 4.2 = 8 cách
Do số phần tử của biến cố A là n(A) = 16 + 8 = 24.
Vậy xác suất của biến cố A là \[P\left( A \right) = \frac{{24}}{{512}}\]\[ = \frac{3}{{64}}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Gieo một con xúc sắc cân đối đồng chất 2 lần. Tính xác suất để tổng số chấm của hai lần gieo nhỏ hơn 6.
Câu 2:
Gieo một con súc sắc cân đối đồng chất 1 lần. Gọi A là biến cố “mặt có chấm lẻ xuất hiện”. Biến cố đối của biến cố A là
Câu 3:
Gieo một con xúc xắc cân đối đồng chất 2 lần. Số phần tử của không gian mẫu là?
Câu 4:
Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Số phần tử của biến cố A là:
Câu 5:
Từ các số tự nhiên 1, 2, 3, 4, 5, 6, 7, 8, 9 lấy ngẫu nhiên một số. Tính xác suất để lấy được số chia hết chia hết cho 3?
Câu 6:
Gieo một đồng xu cân đối và đồng chất ba lần. Tính xác suất của biến cố A: “Kết quả của 3 lần gieo là như nhau”
Câu 7:
Gieo một đồng tiền liên tiếp 3 lần thì số phần tử của không gian mẫu n(Ω) là
về câu hỏi!