Câu hỏi:
08/07/2022 5,111Từ các số tự nhiên 1, 2, 3, 4, 5, 6, 7, 8, 9 lấy ngẫu nhiên một số. Tính xác suất để lấy được số chia hết chia hết cho 3?
Quảng cáo
Trả lời:
Đáp án đúng là: D
Số phần tử của không gian mẫu n(Ω) = 9 (vì lấy 1 số trong 9 số từ 1 đến 9)
Gọi A là biến cố “lấy được số chia hết cho 3”.
Vậy số phần tử của biến cố A là: n(A) = 3 (vì từ 1 đến 9 có 3 số chia hết cho 3 và lấy ra một số).
Xác suất của biến cố A là: P(A) = \(\frac{3}{9} = \frac{1}{3}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Số phần tử của không gian mẫu n(Ω) = 6.6 = 36 (vì mỗi lần gieo có 6 khả năng có thể sảy ra)
Gọi A là biến cố tổng số chấm của hai lần gieo nhỏ hơn 6. Ta liệt kê các phần tử của biến cố A như sau: A = {(1; 1); (1; 2); (1; 3); (1; 4); (2; 1); (2; 2); (2; 3); (3; 1); (3; 2); (4; 1)}.
Vậy số phần tử của biến cố A là: n(A) = 10
Xác suất của biến cố A là: P(A) = \(\frac{{10}}{{36}} = \frac{5}{{18}}\).
Lời giải
Đáp án đúng là: D
Gieo một con xúc xắc cân đối đồng chất 2 lần nên ta có
Lần 1 có 6 khả năng sảy ra (số mặt xuất hiện từ 1 chấm đến 6 chấm).
Lần 2 có 6 khả năng sảy ra (số mặt xuất hiện từ 1 chấm đến 6 chấm).
Vậy số phần tử của không gian mẫu n(Ω) = 6.6 = 36.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.