Quảng cáo
Trả lời:
Để biểu diễn miền nghiệm của hệ bất phương trình đã cho, ta biểu diễn miền nghiệm của mỗi bất phương trình của hệ trên mặt phẳng Oxy và xét phần giao.
+ Vẽ đường thẳng x + y – 4 = 0 đi qua hai điểm (0; 4) và (4; 0).
Xét gốc tọa độ O không thuộc đường thẳng x + y – 4 = 0, ta có: 0 + 0 – 4 = – 4 < 0.
Do đó, miền nghiệm của bất phương trình x + y – 4 ≤ 0 là nửa mặt phẳng có bờ là đường thẳng x + y – 4 = 0, chứa điểm O, kể cả đường thẳng x + y – 4 = 0.
+ Miền nghiệm của bất phương trình x ≥ 0 chính là nửa mặt phẳng có bờ là đường thẳng Oy, nằm bên phải trục Oy, bao gồm cả đường thẳng Oy.
+ Miền nghiệm của bất phương trình y ≥ 0 chính là nửa mặt phẳng có bờ là đường thẳng Ox, nằm bên trên trục Ox, bao gồm cả đường thẳng Ox.
Vậy miền không bị gạch chéo (kể cả bờ) trong hình trên là phần biểu diễn miền nghiệm của hệ bất phương trình đã cho.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì x, y lần lượt là số lít nước hồ tráng bánh đa và bánh xèo nên x ≥ 0, y ≥ 0.
Để pha được x lít nước hồ tráng bánh đa thì cần 200x (g bột gạo).
Để pha được y lít nước hồ tráng bánh xèo thì cần 100y (g bột gạo).
Mà Bích có 500 g bột gạo nên 200x + 100y ≤ 500 ⇔ 2x + y ≤ 5.
Do đó hệ bất phương trình mô tả điều kiện của x, y làĐể biểu diễn miền nghiệm của hệ bất phương trình trên, ta biểu diễn miền nghiệm của mỗi bất phương trình của hệ trên mặt phẳng Oxy và xét phần giao.
+ Vẽ đường thẳng 2x + y = 5 đi qua hai điểm (0; 5) vàXét gốc tọa độ O không thuộc đường thẳng 2x + y = 5, ta có: 2 . 0 + 0 = 0 < 5.
Do đó, miền nghiệm của bất phương trình 2x + y ≤ 5 là nửa mặt phẳng có bờ là đường thẳng 2x + y = 5, chứa điểm O, kể cả đường thẳng 2x + y = 5.
+ Miền nghiệm của bất phương trình x ≥ 0 chính là nửa mặt phẳng có bờ là đường thẳng Oy, nằm bên phải trục Oy, bao gồm cả đường thẳng Oy.
+ Miền nghiệm của bất phương trình y ≥ 0 chính là nửa mặt phẳng có bờ là đường thẳng Ox, nằm bên trên trục Ox, bao gồm cả đường thẳng Ox.
Vậy miền không gạch chéo bao gồm cả các cạnh trong hình trên là phần giao của các miền nghiệm và cũng là phần biểu diễn miền nghiệm của hệ bất phương trình trên.
Lời giải
Gọi x và y lần lượt là số kilôgam thịt bò và thịt heo có thể mua.
Vì gia đình đó chỉ có thể mua một ngày không quá 1 kg thịt bò và 1,5 kg thịt heo, do đó ta có: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,5. (1)
Trong x kilôgam thịt bò chứa khoảng 800x đơn vị protein, 100x đơn vị lipit.
Trong y kilôgam thịt heo chứa khoảng 600y đơn vị protein, 200y đơn vị lipit.
Mà gia đình cần ít nhất 800 đơn vị protein và 200 đơn vị lipit trong khẩu phần thức ăn mỗi ngày nên 800x + 600y ≥ 800 và 100x + 200y ≥ 200.
Ta có: 800x + 600y ≥ 800 ⇔ 4x + 3y ≥ 4. (2)
100x + 200y ≥ 200 ⇔ x + 2y ≥ 2. (3)
Để biểu diễn miền nghiệm của hệ bất phương trình trên, ta biểu diễn miền nghiệm của mỗi bất phương trình của hệ trên mặt phẳng Oxy và xét phần giao.
+ Vẽ đường thẳng 4x + 3y = 4 đi qua hai điểm và (1; 0).
Xét gốc tọa độ O không thuộc đường thẳng 4x + 3y = 4, ta có: 4 . 0 + 3 . 0 = 0 < 4.
Do đó, miền nghiệm của bất phương trình 4x + 3y ≥ 4 là nửa mặt phẳng có bờ là đường thẳng 4x + 3y = 4, không chứa điểm O, kể cả đường thẳng 4x + 3y = 4.
+ Vẽ đường thẳng x + 2y = 2 đi qua hai điểm (0; 1) và (2; 0).
Xét gốc tọa độ O không thuộc đường thẳng x + 2y = 2, ta có: 0 + 2 . 0 = 0 < 2.
Do đó, miền nghiệm của bất phương trình x + 2y ≥ 2 là nửa mặt phẳng có bờ là đường thẳng x + 2y = 2, không chứa điểm O, kể cả đường thẳng x + 2y = 2.
+ Miền nghiệm của bất phương trình x ≥ 0 chính là nửa mặt phẳng có bờ là đường thẳng Oy, nằm bên phải trục Oy, bao gồm cả đường thẳng Oy.
+ Miền nghiệm của bất phương trình x ≤ 1 chính là nửa mặt phẳng có bờ là đường thẳng x = 1, nằm bên trái đường thẳng x = 1, bao gồm cả đường thẳng x = 1.
+ Miền nghiệm của bất phương trình y ≥ 0 chính là nửa mặt phẳng có bờ là đường thẳng Ox, nằm bên trên trục Ox, bao gồm cả đường thẳng Ox.
+ Miền nghiệm của bất phương trình y ≤ 1,5 chính là nửa mặt phẳng có bờ là đường thẳng y = 1,5, nằm bên dưới đường thẳng y = 1,5, bao gồm cả đường thẳng y = 1,5.
Số tiền gia đình đó cần bỏ ra để mua được x kilôgam thịt bò (250 nghìn đồng/1kg) và y kilôgam thịt lợn (200 nghìn đồng/1kg) là F = 250x + 200y (nghìn đồng).
Người ta chứng minh được rằng F đạt giá trị nhỏ nhất tại một trong các đỉnh của ngũ giác ABCDE.
Ta có:= 250 . 0 + 200 . = .
F(0; 1,5) = 250 . 0 + 200 . 1,5 = 300.
F(1; 1,5) = 250 . 1 + 200 . 1,5 = 550.
F(1; 0,5) = 250 . 1 + 200 . 0,5 = 350.
F(0,4; 0,8) = 250 . 0,4 + 200 . 0,8 = 260.
Do đó, F đạt giá trị nhỏ nhất là 260 nghìn đồng tại đỉnh E(0,4; 0,8).
Vậy gia đình này chỉ cần mua 0,4 kg thịt bò và 0,8 kg thịt heo để đủ đáp ứng yêu cầu về dinh dưỡng mà lại tốn chi phí ít nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
50 câu trắc nghiệm Thống kê cơ bản (phần 1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận