Câu hỏi:
09/08/2022 6,616Một công ty cho thuê xe để chở 140 người và 9 tấn hàng. Nơi thuê xe có hai loại xe A và B trong đó loại xe A có 10 chiếc và loại xe B có 9 chiếc. Một chiếc xe loại A cho thuê với giá 4 triệu đồng, một chiếc xe loại B cho thuê với giá 3 triệu đồng. Biết rằng mỗi xe loại A có thể chở tối đa 20 người và 0,6 tấn hàng; mỗi xe loại B có thể chở tối đa 10 người và 1,5 tấn hàng. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí bỏ ra là ít nhất ?
Quảng cáo
Trả lời:
Đáp án đúng là: C
Gọi x, y lần lượt là số xe loại A và B cần thuê. Khi đó số tiền cần bỏ ra để thuê xe là F(x; y) = 4x + 3y. Ta có x xe loại A sẽ chở được 20x và 0,6x tấn hàng; y xe loại B sẽ chở được 10y người và 1,5y tấn hàng. Suy ra x xe loại A và y xe loại B sẽ chở được 20x + 10y người và 0,6x + 1,5y tấn hàng.
Ta có hệ bất phương trình sau:
Miền nghiệm của hệ trên là miền tứ giác màu trắng trong hình vẽ.
Ta có:
F(5; 4) = 32
F(10; 2) = 46
F(10; 9) = 67
F = 37
Do đó, F(x; y) nhỏ nhất khi (x; y) = (5; 4).
Vây để chi phí vận chuyển thấp nhất cần thuê 5 xe loại A và 4 xe loại B.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Gọi số bánh chưng gói được là x, số bánh ống gói được là y. (x, y ≥ 0)
Khi đó số điểm thưởng là F(x; y) = 5x + 7y
Số kg gạo nếp cần dùng là 0,4x + 0,6y
Số kg thịt cần dùng là 0,05x + 0,075y
Số kg đậu xanh cần dùng là 0,1x + 0,15y
Vì trong cuộc thi này chỉ được sử dụng tối đa 20kg gạo nếp, 2kg thịt ba chỉ và 5kg đậu xanh nên ta có hệ bất phương trình
Miền nghiệm của hệ bất phương trình là tam giác OAB (kể cả biên)
F(x; y) sẽ đạt giá trị lớn nhất trên miền nghiệm của hệ bất phương trình trên khi (x; y) là tọa độ một trong các đỉnh O(0; 0), A, B(40; 0) (loại điểm A vì số bánh phải là số nguyên).
Ta có:
F(0; 0) = 5.0 + 7.0 = 0
F(40; 0) = 5.40 + 7.0 = 200
Do đó, F(x; y) lớn nhất là 200. Vậy cần phải gói 40 cái bánh chưng để nhận được số điểm thưởng là lớn nhất.
Lời giải
Đáp án đúng là: A
Gọi x, y lần lượt là số tấn sản phẩm loại A, B mà phân xưởng sản xuất trong 1 ngày (x ≥ 0, y ≥ 0).
Khi đó, số tiền lãi một ngày là: F(x; y) = 2x + 1,6y (triệu đồng).
Số giờ làm việc trong ngày của máy loại 1 là 3x + y.
Số giờ làm việc trong ngày của máy loại 2 là x + y.
Vì máy loại 1 làm việc không quá 6 giờ một ngày, máy loại 2 làm việc không quá 4 giờ 1 ngày nên ta có hệ phương trình
Miền nghiệm của hệ phương trình là miền tứ giác không bị gạch trong hình vẽ.
Ta có:
F(0; 0) = 0
F(2; 0) = 4
F(1; 3) = 6,8
F(0; 4) = 6,4
Do đó F(x; y) lớn nhất khi (x; y) = (1; 3).
Vậy để thu được lãi lớn nhất phải sản xuất 1 tấn sản phẩm loại A và 3 tấn sản phẩm loại B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Tìm hệ số, số hạng trong khai triển nhị thức Newton (có lời giải)
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)
15 câu Trắc nghiệm Toán 10 chân trời sáng tạo Không gian mẫu và biến cố có đáp án