Câu hỏi:

09/08/2022 988

Hai đường thẳng xz và yt cắt nhau tại A như hình vẽ bên, hãy xác định các cặp góc đối đỉnh có trong hình vẽ.

Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

- Vì hai đường thẳng xz và yt cắt nhau tại A nên ta có: Hai tia Ax và Az đối nhau; hai tia Ay và At đối nhau.

- Xét hai góc \(\widehat {xAt}\)\(\widehat {yAz}\) có:

+ Chung đỉnh A.

+ Tia Ax là tia đối của tia Az; tia At là tia đối của tia Ay.

Do đó \(\widehat {xAt}\)\(\widehat {yAz}\) là hai góc đối đỉnh.

- Xét hai góc \(\widehat {xAy}\)\(\widehat {tAz}\) có:

+ Chung đỉnh A.

+ Tia Ax là tia đối của tia Az; tia Ay là tia đối của tia At.

Do đó \(\widehat {xAy}\)\(\widehat {tAz}\) là hai góc đối đỉnh.

Vậy ta có hai cặp góc đối đỉnh là: \(\widehat {xAt}\)\(\widehat {yAz}\); \(\widehat {xAy}\)\(\widehat {tAz}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Đáp án đúng là: D

+ Hai đường thẳng cắt nhau tạo thành hai cặp góc đối đỉnh.

Ví dụ hai đường thẳng xx’ và yy’ cắt nhau tại A sẽ tạo thành hai cặp góc đối đỉnh là \(\widehat {xAy}\) và \(\widehat {x'Ay'}\); \(\widehat {xAy'}\) và \(\widehat {x'Ay}\).

Media VietJack

Do đó khẳng định D đúng.

+ Khẳng định A, B, C sai vì:

Hai góc có tổng bằng 180° là hai góc bù nhau.

Hai góc vừa kề nhau, vừa bù nhau là hai góc kề bù.

Hai góc kề nhau là hai góc có một cạnh chung và hai cạnh còn lại nằm khác phía đối với đường thẳng chứa cạnh chung đó.

Lời giải

Hướng dẫn giải:

Đáp án đúng là: B

Hai góc đối đỉnh thì bằng nhau nhưng hai góc bằng nhau thì chưa chắc đã đối đỉnh. Dưới đây là một số ví dụ về trường hợp hai góc bằng nhau nhưng không đối đỉnh:

Media VietJack

Hai góc kề bù là hai góc vừa kề nhau, vừa bù nhau.

Do đó các khẳng định (I), (III) đúng. Khẳng định (II) sai.

Vậy có 2 khẳng định đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP