Câu hỏi:
10/08/2022 678Cho định lí: “Hai tia phân giác của hai góc kề bù thì vuông góc với nhau” được minh hoạ bởi hình vẽ sau:
Hãy sắp xếp các câu sau để được lời giải hoàn chỉnh cho bài toán chứng minh định lí trên:
(I). “Suy ra Oy vuông góc với Oy'
Vậy định lí được chứng minh.”;
(II). “Vì Oy' là tia phân giác của \(\widehat {x'Oz}\) (giả thiết) nên \({\widehat O_3} = \frac{1}{2}\widehat {x'Oz}\)”;
(III) “Mà \(\widehat {xOz}\) và \(\widehat {zOx'}\)là hai góc kề bù (giả thiết)
Nên \(\widehat {xOz} + \widehat {zOx'} = 180^\circ \) (tính chất hai góc kề bù)
Do đó \(\widehat {yOy'} = \frac{1}{2}{.180^o} = {90^o}\)”;
(IV). “Có \(\widehat {yOy'} = {\widehat O_2} + {\widehat O_3}\)\( = \frac{1}{2}\widehat {xOz} + \frac{1}{2}\widehat {x'Oz}\)\( = \frac{1}{2}\left( {\widehat {xOz} + \widehat {zOx'}} \right)\)”
(V). “Vì Oy là tia phân giác của \(\widehat {xOz}\)(giả thiết) nên \({\widehat O_2} = \frac{1}{2}\widehat {xOz}\)”.
Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: B
Để chứng minh định lí trên, ta làm như sau:
Vì Oy là tia phân giác của \(\widehat {xOz}\)(giả thiết) nên \({\widehat O_2} = \frac{1}{2}\widehat {xOz}\)
Vì Oy' là tia phân giác của \(\widehat {x'Oz}\) (giả thiết) nên \({\widehat O_3} = \frac{1}{2}\widehat {x'Oz}\)
Có \(\widehat {yOy'} = {\widehat O_2} + {\widehat O_3}\)\( = \frac{1}{2}\widehat {xOz} + \frac{1}{2}\widehat {x'Oz}\)\( = \frac{1}{2}\left( {\widehat {xOz} + \widehat {zOx'}} \right)\)
Mà \(\widehat {xOz}\) và \(\widehat {zOx'}\)là hai góc kề bù (giả thiết)
Nên \(\widehat {xOz} + \widehat {zOx'} = 180^\circ \) (tính chất hai góc kề bù)
Do đó \(\widehat {yOy'} = \frac{1}{2}{.180^o} = {90^o}\)
Suy ra Oy vuông góc với Oy'
Vậy định lí được chứng minh.
Vậy ta sắp xếp các bước như sau: (V) – (II) – (IV) – (III) – (I).
Ta chọn phương án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho định lí: “Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó vuông góc với đường thẳng còn lại”.
Giả thiết và kết luận của định lí trên là:
Câu 2:
Cho định lí: “Nếu một đường thẳng cắt hai đường thẳng song song thì hai góc trong cùng phía bù nhau”.
Vẽ hình cho định lí trên;
Câu 3:
Câu 4:
Cho định lí: “Nếu một đường thẳng cắt hai đường thẳng song song thì hai góc trong cùng phía bù nhau”.
Chứng minh định lí.
Câu 5:
Phát biểu định lí sau bằng lời:
GT |
a ⊥ b; c ⊥ b; a ≠ c |
KL |
a // c |
Câu 6:
Cho định lí: “Nếu hai đường thẳng phân biệt cùng cắt đường thẳng thứ ba và trong các góc tạo thành có một cặp góc so le trong bằng nhau thì các cặp góc đồng vị bằng nhau”.
Viết giả thiết, kết luận của định lí trên;
15 câu Trắc nghiệm Toán 7 KNTT Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
12 Bài tập Một số bài toán thực tế liên quan đại lượng tỉ lệ thuận (có lời giải)
10 câu Trắc nghiệm Toán 7 CD Bài tập cuối chương 7 có đáp án (Nhận biết)
5 câu Trắc nghiệm Toán 7 CTST Bài tập cuối chương 9 có đáp án (Nhận biết)
Đề thi giữa kì 1 Toán 7 KNTT có đáp án - Đề 1
Bài tập chuyên đề Toán 7 Dạng 2: Tỉ lệ thức. Tính chất của dãy tỉ số bằng nhau có đáp án
Bài tập chuyên đề Toán 7 Dạng 4: Hai tam giác bằng nhau. Các trường hợp bằng nhau của hai tam giác có đáp án
về câu hỏi!