16 Bài tập Cách viết giả thiết, kết luận, vẽ hình và chứng minh một định lí (có lời giải)
76 người thi tuần này 4.6 753 lượt thi 16 câu hỏi 30 phút
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Bài tập: Giá trị của một biểu thức đại số có đáp án
Bài tập: Quan hệ giữa ba cạnh của một tam giác. Bất đẳng thức tam giác có đáp án
Bài tập: Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh có đáp án
Bài tập: Các góc tạo bởi một đường thẳng cắt hai đường thẳng có đáp án
Bài tập: Tính chất ba đường phân giác của tam giác có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải:
|
GT |
aa' cắt cc’ tại A; bb' cắt cc’ tại B; \[\widehat {aAB} = \widehat {ABb'}\] |
|
KL |
\[\widehat {cAa'} = \widehat {ABb'}\] \[\widehat {aAB} = \widehat {bBc'}\] \[\widehat {aAc} = \widehat {bBA}\] \[\widehat {a'AB} = \widehat {b'Bc'}\] |
Lời giải
Hướng dẫn giải:
+ Ta có \[\widehat {aAB} = \widehat {ABb'}\] (giả thiết)
Mà \[\widehat {aAB} = \widehat {cAa'}\] (hai góc đối đỉnh)
Suy ra \[\widehat {cAa'} = \widehat {ABb'}\] (vì cùng bằng \[\widehat {aAB}\]).
+ Ta có \[\widehat {aAB} = \widehat {ABb'}\](giả thiết)
Mà \[\widehat {ABb'} = \widehat {bBc'}\] (hai góc đối đỉnh)
Suy ra \[\widehat {aAB} = \widehat {bBc'}\] (vì cùng bằng \[\widehat {ABb'}\]).
+ Ta có \[\widehat {aAc}\] + \[\widehat {BAa}\] = 180° (hai góc kề bù)
Và \[\widehat {bBA}\] + \[\widehat {ABb'}\] = 180° (hai góc kề bù)
Mà \[\widehat {aAB} = \widehat {ABb'}\]
Suy ra \[\widehat {aAc}\] = \[\widehat {bBA}\].
+ Ta có \[\widehat {a'AB}\] = \[\widehat {aAc}\] (hai góc đối đỉnh)
\[\widehat {b'Bc'}\] = \[\widehat {bBA}\] (hai góc đối đỉnh)
Mà \[\widehat {aAc}\] = \[\widehat {bBA}\]
Suy ra \[\widehat {a'AB} = \widehat {b'Bc'}\].
Vậy định lí được chứng minh.
Lời giải
Hướng dẫn giải:
|
GT |
aa' cắt cc’ tại A; bb' cắt cc’ tại B; aa’ // bb’ |
|
KL |
\[\widehat {aAB} + \widehat {ABb} = 180^\circ ;\] \[\widehat {a'AB} + \widehat {ABb'} = 180^\circ \] |
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A.
|
GT |
x ⊥ y; y // z |
|
KL |
x ⊥ z |
B.
|
GT |
x // y; y // z |
|
KL |
x ⊥ z |
C.
|
GT |
x ⊥ y; y ⊥ z |
|
KL |
x // z |
D.
|
GT |
x ⊥ y; y // z |
|
KL |
x // z |
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A.
|
GT |
aa' cắt cc' tại A, bb' cắt cc' tại B, aa' ≠ bb', \[\widehat {aAB} = \widehat {bBc'}\] |
|
KL |
\[\widehat {{\rm{aA}}B} + \widehat {ABb} = 180^\circ ;\] \[\widehat {{\rm{a'A}}B} + \widehat {ABb'} = 180^\circ \] |
B.
|
GT |
aa' cắt cc' tại A, bb' cắt cc' tại B, aa' ≠ bb' |
|
KL |
\[\widehat {aAB} = \widehat {bBc'};\] \[\widehat {{\rm{aA}}B} + \widehat {ABb} = 180^\circ ;\] \[\widehat {{\rm{a'A}}B} + \widehat {ABb'} = 180^\circ \] |
C.
|
GT |
aa' cắt cc' tại A, bb' cắt cc' tại B, aa' ≠ bb', \[\widehat {aAB} = \widehat {bBc'};\] \[\widehat {{\rm{aA}}B} + \widehat {ABb} = 180^\circ ;\] |
|
KL |
\[\widehat {{\rm{a'A}}B} + \widehat {ABb'} = 180^\circ \] |
D.
|
GT |
aa' cắt cc' tại A, bb' cắt cc' tại B, aa' ≠ bb', \[\widehat {aAB} = \widehat {bBc'};\] |
|
KL |
\[\widehat {{\rm{aA}}B} = \widehat {ABb};\] \[\widehat {{\rm{a'A}}B} = \widehat {ABb'};\] |
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
Cho hình vẽ:

Bảng sau là giả thiết, kết luận của định lí nào?
|
GT |
aa' cắt cc' tại A, bb' cắt cc' tại B (aa' ≠ bb') \[\widehat {aAB}\] + \[\widehat {ABb}\] = 180° |
|
KL |
\[\widehat {aAB} = \widehat {ABb'};\]\[\widehat {a'AB} = \widehat {ABb}\] |
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 13
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 14
A.
|
GT |
\({\widehat O_1}\) và \({\widehat O_3}\) là hai góc đối đỉnh |
|
KL |
\({\widehat O_1} + {\widehat O_3} = 180^\circ \) |
B.
|
GT |
\({\widehat O_1}\) và \({\widehat O_3}\) là hai góc kề bù |
|
KL |
\({\widehat O_1} = {\widehat O_3}\) |
C.
|
GT |
\({\widehat O_1}\) và \({\widehat O_3}\) là hai góc đối đỉnh |
|
KL |
\({\widehat O_1} = {\widehat O_3}\) |
D.
|
GT |
\({\widehat O_1}\) và \({\widehat O_3}\) là hai góc kề bù |
|
KL |
\({\widehat O_3} = {\widehat O_4}\) |
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 15
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.






